We consider testing graph expansion in the bounded-degree graph model.
Specifically, we refer to algorithms for testing whether the graph
has a second eigenvalue bounded above by a given threshold
or is far from any graph with such (or related) property.
We present a natural algorithm aimed ... more >>>
Let $d \geq d_0$ be a sufficiently large constant. A $(n,d,c
\sqrt{d})$ graph $G$ is a $d$ regular graph over $n$ vertices whose
second largest eigenvalue (in absolute value) is at most $c
\sqrt{d}$. For any $0 < p < 1, ~G_p$ is the graph induced by
retaining each edge ...
more >>>
This paper studies expansion properties of the (generalized) Johnson Graph. For natural numbers
t < l < k, the nodes of the graph are sets of size l in a universe of size k. Two sets are connected if
their intersection is of size t. The Johnson graph arises often ...
more >>>