It is well known that every finite Abelian group $G$ can be
represented as a product of cyclic groups: $G=G_1\times
G_2\times\cdots G_t$, where each $G_i$ is a cyclic group of size
$p^j$ for some prime $p$ and integer $j\ge 1$. If $a_i$ is the
generator of the cyclic group of ...
more >>>
We consider the following problem: Given an $n \times n$ multiplication table, decide whether it is a Cayley multiplication table of a group. Among deterministic algorithms for this problem, the best known algorithm is implied by F. W. Light's associativity test (1949) and has running time of $O(n^2 \log n)$. ... more >>>