Arkadev Chattopadhyay

We develop a new technique of proving lower bounds for the randomized communication complexity of boolean functions in the multiparty 'Number on the Forehead' model. Our method is based on the notion of voting polynomial degree of functions and extends the Degree-Discrepancy Lemma in the recent work of Sherstov (STOC'07). ... more >>>

Ran Raz

A basic fact in linear algebra is that the image of the curve

$f(x)=(x^1,x^2,x^3,...,x^m)$, say over $C$, is not contained in any

$m-1$ dimensional affine subspace of $C^m$. In other words, the image

of $f$ is not contained in the image of any polynomial-mapping

$G:C^{m-1} ---> C^m$ ...
more >>>

Andreas Krebs, Nutan Limaye, Meena Mahajan, Karteek Sreenivasaiah

A proof system for a language $L$ is a function $f$ such that Range$(f)$ is exactly $L$. In this paper, we look at proofsystems from a circuit complexity point of view and study proof systems that are computationally very restricted. The restriction we study is: they can be computed by ... more >>>

Or Meir

One of the important challenges in circuit complexity is proving strong

lower bounds for constant-depth circuits. One possible approach to

this problem is to use the framework of Karchmer-Wigderson relations:

Karchmer and Wigderson (SIDMA 3(2), 1990) observed that for every Boolean

function $f$ there is a corresponding communication problem $\mathrm{KW}_{f}$,

more >>>

Oded Goldreich, Avishay Tal

We consider new complexity measures for the model of multilinear circuits with general multilinear gates introduced by Goldreich and Wigderson (ECCC, 2013).

These complexity measures are related to the size of canonical constant-depth Boolean circuits, which extend the definition of canonical depth-three Boolean circuits.

We obtain matching lower and upper ...
more >>>

Mark Bun, Robin Kothari, Justin Thaler

We give new quantum algorithms for evaluating composed functions whose inputs may be shared between bottom-level gates. Let $f$ be a Boolean function and consider a function $F$ obtained by applying $f$ to conjunctions of possibly overlapping subsets of $n$ variables. If $f$ has quantum query complexity $Q(f)$, we give ... more >>>