Computing the maximum bichromatic discrepancy is an interesting
theoretical problem with important applications in computational
learning theory, computational geometry and computer graphics.
In this paper we give algorithms to compute the maximum
bichromatic discrepancy for simple geometric ranges, including
rectangles and halfspaces.
In addition, we give ...
more >>>
We develop a new technique of proving lower bounds for the randomized communication complexity of boolean functions in the multiparty 'Number on the Forehead' model. Our method is based on the notion of voting polynomial degree of functions and extends the Degree-Discrepancy Lemma in the recent work of Sherstov (STOC'07). ... more >>>
We study multilinear formulas, monotone arithmetic circuits, maximal-partition discrepancy, best-partition communication complexity and extractors constructions. We start by proving lower bounds for an explicit polynomial for the following three subclasses of syntactically multilinear arithmetic formulas over the field C and the set of variables {x1,...,xn}:
1. Noise-resistant. A syntactically multilinear ... more >>>
We extend the 'Generalized Discrepancy' technique suggested by Sherstov to the `Number on the Forehead' model of multiparty communication. This allows us to prove strong lower bounds of n^{\Omega(1)} on the communication needed by k players to compute the Disjointness function, provided $k$ is a constant. In general, our method ... more >>>
We provide a non-explicit separation of the number-on-forehead communication complexity classes RP and NP when the number of players is up to \delta log(n) for any \delta<1. Recent lower bounds on Set-Disjointness [LS08,CA08] provide an explicit separation between these classes when the number of players is only up to o(loglog(n)).
... more >>>In this paper we study quantum nondeterminism in multiparty communication. There are three (possibly) different types of nondeterminism in quantum computation: i) strong, ii) weak with classical proofs, and iii) weak with quantum proofs. Here we focus on the first one. A strong quantum nondeterministic protocol accepts a correct input ... more >>>
We prove the following hardness result for a natural promise variant of the classical CNF-satisfiability problem: Given a CNF-formula where each clause has width $w$ and the guarantee that there exists an assignment satisfying at least $g = \lceil \frac{w}{2}\rceil -1$ literals in each clause, it is NP-hard to find ... more >>>
Motivated by the Beck-Fiala conjecture, we study discrepancy bounds for random sparse set systems. Concretely, these are set systems $(X,\Sigma)$, where each element $x \in X$ lies in $t$ randomly selected sets of $\Sigma$, where $t$ is an integer parameter. We provide new bounds in two regimes of parameters. We ... more >>>
We show that a simple function has small unbounded error communication complexity in the $k$-party number-on-forehead (NOF) model but every probabilistic protocol that solves it with sub-exponential advantage over random guessing has cost essentially $\Omega\left(\frac{\sqrt{n}}{4^k}\right)$ bits. Such a separation was first shown for $k=2$ independently by Buhrman et al. ['07] ... more >>>
We show a new duality between the polynomial margin complexity of $f$ and the discrepancy of the function $f \circ$ XOR, called an XOR function. Using this duality,
we develop polynomial based techniques for understanding the bounded error (BPP) and the weakly-unbounded error (PP) communication complexities of XOR functions. ...
more >>>
If $k<n$, can one express the majority of $n$ bits as the majority of at most $k$ majorities, each of at most $k$ bits? We prove that such an expression is possible only if $k = \Omega(n^{4/5})$. This improves on a bound proved by Kulikov and Podolskii, who showed that ... more >>>
We prove two new results about the inability of low-degree polynomials to uniformly approximate constant-depth circuits, even to slightly-better-than-trivial error. First, we prove a tight $\tilde{\Omega}(n^{1/2})$ lower bound on the threshold degree of the Surjectivity function on $n$ variables. This matches the best known threshold degree bound for any AC$^0$ ... more >>>
Sign-rank and discrepancy are two central notions in communication complexity. The seminal work of Babai, Frankl, and Simon from 1986 initiated an active line of research that investigates the gap between these two notions.
In this article, we establish the strongest possible separation by constructing a Boolean matrix whose sign-rank ...
more >>>
Lifting theorems are theorems that relate the query complexity of a function $f:\left\{ 0,1 \right\}^n\to \left\{ 0,1 \right\}$ to the communication complexity of the composed function $f\circ g^n$, for some “gadget” $g:\left\{ 0,1 \right\}^b\times \left\{ 0,1 \right\}^b\to \left\{ 0,1 \right\}$. Such theorems allow transferring lower bounds from query complexity to ... more >>>
We establish an $\epsilon$-sensitive hierarchy separation for monotone arithmetic computations. The notion of $\epsilon$-sensitive monotone lower bounds was recently introduced by Hrubes [Computational Complexity'20]. We show the following:
(1) There exists a monotone polynomial over $n$ variables in VNP that cannot be computed by $2^{o(n)}$ size monotone ...
more >>>
We introduce a new topological argument based on the Borsuk-Ulam theorem to prove a lower bound on sign-rank.
This result implies the strongest possible separation between randomized and unbounded-error communication complexity. More precisely, we show that for a particular range of parameters, the randomized communication complexity of ... more >>>
We study the randomized communication complexity of the following problem. Alice receives the integer coordinates of a point in the plane, and Bob receives the integer parameters of a half-plane, and their goal is to determine whether Alice's point belongs to Bob's half-plane.
This communication task corresponds to determining ... more >>>
Several theorems and conjectures in communication complexity state or speculate that the complexity of a matrix in a given communication model is controlled by a related analytic or algebraic matrix parameter, e.g., rank, sign-rank, discrepancy, etc. The forward direction is typically easy as the structural implications of small complexity often ... more >>>
Lifting theorems are theorems that bound the communication complexity
of a composed function $f\circ g^{n}$ in terms of the query complexity
of $f$ and the communication complexity of $g$. Such theorems
constitute a powerful generalization of direct-sum theorems for $g$,
and have seen numerous applications in recent years.
We prove ... more >>>
Direct sum theorems state that the cost of solving $k$ instances of a problem is at least $\Omega(k)$ times
the cost of solving a single instance. We prove the first such results in the randomised parity
decision tree model. We show that a direct sum theorem holds whenever (1) the ...
more >>>