The isomorphism problem for planar graphs is known to be efficiently solvable. For planar 3-connected graphs, the isomorphism problem can be solved by efficient parallel algorithms, it is in the class AC^1.
In this paper we improve the upper bound for planar 3-connected graphs to unambiguous logspace, in fact to ... more >>>
We report progress on the \NL\ vs \UL\ problem.
\begin{itemize}
\item[-] We show unconditionally that the complexity class $\ReachFewL\subseteq\UL$. This improves on the earlier known upper bound $\ReachFewL \subseteq \FewL$.
\item[-] We investigate the complexity of min-uniqueness - a central
notion in studying the \NL\ vs \UL\ problem.
more >>>
We prove that Perfect Matching in bipartite planar graphs is in UL, improving upon
the previous bound of SPL (see [DKR10]) on its space complexity. We also exhibit space
complexity bounds for some related problems. Summarizing, we show that, constructing:
1. a Perfect Matching in bipartite planar graphs is in ...
more >>>
We provide new upper bounds on the complexity of the s-t-connectivity problem in planar graphs, thereby providing additional evidence that this problem is not complete for NL. This also yields a new upper bound on the complexity of computing edit distance. Building on these techniques, we provide new upper bounds ... more >>>
This paper revisits the study of two classical technical tools in theoretical computer science: Yao's transformation of distinguishers to next-bit predictors (FOCS 1982), and the ``reconstruction paradigm'' in pseudorandomness (e.g., as in Nisan and Wigderson, JCSS 1994). Recent works of Pyne, Raz, and Zhan (FOCS 2023) and Doron, Pyne, and ... more >>>