Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with black-box:
TR07-042 | 7th May 2007
Zohar Karnin, Amir Shpilka

Black Box Polynomial Identity Testing of Depth-3 Arithmetic Circuits with Bounded Top Fan-in

Revisions: 2 , Comments: 1

In this paper we consider the problem of determining whether an
unknown arithmetic circuit, for which we have oracle access,
computes the identically zero polynomial. Our focus is on depth-3
circuits with a bounded top fan-in. We obtain the following

1. A quasi-polynomial time deterministic black-box identity testing algorithm ... more >>>

TR07-130 | 3rd December 2007
Ronen Shaltiel, Emanuele Viola

Hardness amplification proofs require majority

Hardness amplification is the fundamental task of
converting a $\delta$-hard function $f : {0,1}^n ->
{0,1}$ into a $(1/2-\eps)$-hard function $Amp(f)$,
where $f$ is $\gamma$-hard if small circuits fail to
compute $f$ on at least a $\gamma$ fraction of the
inputs. Typically, $\eps,\delta$ are small (and
$\delta=2^{-k}$ captures the case ... more >>>

TR09-006 | 19th January 2009
David Xiao

On basing ZK != BPP on the hardness of PAC learning

Learning is a central task in computer science, and there are various
formalisms for capturing the notion. One important model studied in
computational learning theory is the PAC model of Valiant (CACM 1984).
On the other hand, in cryptography the notion of ``learning nothing''
is often modelled by the simulation ... more >>>

TR16-050 | 31st March 2016
Roei Tell

Lower Bounds on Black-Box Reductions of Hitting to Density Estimation

Revisions: 1

We consider the following problem. A deterministic algorithm tries to find a string in an unknown set $S\subseteq\{0,1\}^n$ that is guaranteed to have large density (e.g., $|S|\ge2^{n-1}$). However, the only information that the algorithm can obtain about $S$ is estimates of the density of $S$ in adaptively chosen subsets of ... more >>>

TR18-133 | 26th July 2018
Emanuele Viola

Constant-error pseudorandomness proofs from hardness require majority

Revisions: 1

Research in the 80's and 90's showed how to construct a pseudorandom
generator from a function that is hard to compute on more than $99\%$
of the inputs. A more recent line of works showed however that if
the generator has small error, then the proof of correctness cannot
be ... more >>>

ISSN 1433-8092 | Imprint