Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > ALGORITHM:
Reports tagged with algorithm:
TR95-033 | 29th June 1995
Richard Beigel, David Eppstein

3-Coloring in time O(1.3446^n): a no-MIS algorithm

We consider worst case time bounds for NP-complete problems
including 3-SAT, 3-coloring, 3-edge-coloring, and 3-list-coloring.
Our algorithms are based on a common generalization of these problems,
called symbol-system satisfiability or, briefly, SSS [R. Floyd &
R. Beigel, The Language of Machines]. 3-SAT is equivalent to
(2,3)-SSS while the other problems ... more >>>


TR06-025 | 19th January 2006
Leonid Gurvits

Hyperbolic Polynomials Approach to Van der Waerden/Schrijver-Valiant like Conjectures :\\ Sharper Bounds , Simpler Proofs and Algorithmic Applications

Let $p(x_1,...,x_n) = p(X) , X \in R^{n}$ be a homogeneous polynomial of degree $n$ in $n$ real variables ,
$e = (1,1,..,1) \in R^n$ be a vector of all ones . Such polynomial $p$ is
called $e$-hyperbolic if for all real vectors $X \in R^{n}$ the univariate polynomial
equation ... more >>>


TR08-074 | 19th July 2008
Neeraj Kayal, Timur Nezhmetdinov

Factoring groups efficiently

We give a polynomial time algorithm that computes a
decomposition of a finite group G given in the form of its
multiplication table. That is, given G, the algorithm outputs two
subgroups A and B of G such that G is the direct product
of A ... more >>>


TR13-123 | 6th September 2013
Joshua Grochow, Youming Qiao

Algorithms for group isomorphism via group extensions and cohomology

The isomorphism problem for groups given by multiplication tables (GpI) is well-known to be solvable in n^O(log n) time, but only recently has there been significant progress towards polynomial time. For example, in 2012 Babai et al. (ICALP 2012) gave a polynomial-time algorithm for groups with no abelian normal subgroups. ... more >>>


TR13-141 | 8th October 2013
Leonid Gurvits

Boolean matrices with prescribed row/column sums and stable homogeneous polynomials: combinatorial and algorithmic applications

Revisions: 1

We prove a new efficiently computable lower bound on the coefficients of stable homogeneous polynomials and present its algorthmic and combinatorial applications. Our main application is the first poly-time deterministic algorithm which approximates the partition functions associated with
boolean matrices with prescribed row and (uniformly bounded) column sums within simply ... more >>>


TR21-044 | 14th February 2021
Alexander Kulikov, Nikita Slezkin

SAT-based Circuit Local Improvement

Finding exact circuit size is a notorious optimization problem in practice. Whereas modern computers and algorithmic techniques allow to find a circuit of size seven in blink of an eye, it may take more than a week to search for a circuit of size thirteen. One of the reasons of ... more >>>


TR22-044 | 4th April 2022
Meghal Gupta, Naren Manoj

An Optimal Algorithm for Certifying Monotone Functions

Given query access to a monotone function $f\colon\{0,1\}^n\to\{0,1\}$ with certificate complexity $C(f)$ and an input $x^{\star}$, we design an algorithm that outputs a size-$C(f)$ subset of $x^{\star}$ certifying the value of $f(x^{\star})$. Our algorithm makes $O(C(f) \cdot \log n)$ queries to $f$, which matches the information-theoretic lower bound for this ... more >>>




ISSN 1433-8092 | Imprint