Richard Beigel, David Eppstein

We consider worst case time bounds for NP-complete problems

including 3-SAT, 3-coloring, 3-edge-coloring, and 3-list-coloring.

Our algorithms are based on a common generalization of these problems,

called symbol-system satisfiability or, briefly, SSS [R. Floyd &

R. Beigel, The Language of Machines]. 3-SAT is equivalent to

(2,3)-SSS while the other problems ...
more >>>

Leonid Gurvits

Let $p(x_1,...,x_n) = p(X) , X \in R^{n}$ be a homogeneous polynomial of degree $n$ in $n$ real variables ,

$e = (1,1,..,1) \in R^n$ be a vector of all ones . Such polynomial $p$ is

called $e$-hyperbolic if for all real vectors $X \in R^{n}$ the univariate polynomial

equation ...
more >>>

Neeraj Kayal, Timur Nezhmetdinov

We give a polynomial time algorithm that computes a

decomposition of a finite group G given in the form of its

multiplication table. That is, given G, the algorithm outputs two

subgroups A and B of G such that G is the direct product

of A ...
more >>>

Joshua Grochow, Youming Qiao

The isomorphism problem for groups given by multiplication tables (GpI) is well-known to be solvable in n^O(log n) time, but only recently has there been significant progress towards polynomial time. For example, in 2012 Babai et al. (ICALP 2012) gave a polynomial-time algorithm for groups with no abelian normal subgroups. ... more >>>

Leonid Gurvits

We prove a new efficiently computable lower bound on the coefficients of stable homogeneous polynomials and present its algorthmic and combinatorial applications. Our main application is the first poly-time deterministic algorithm which approximates the partition functions associated with

boolean matrices with prescribed row and (uniformly bounded) column sums within simply ...
more >>>

Alexander Kulikov, Nikita Slezkin

Finding exact circuit size is a notorious optimization problem in practice. Whereas modern computers and algorithmic techniques allow to find a circuit of size seven in blink of an eye, it may take more than a week to search for a circuit of size thirteen. One of the reasons of ... more >>>

Meghal Gupta, Naren Manoj

Given query access to a monotone function $f\colon\{0,1\}^n\to\{0,1\}$ with certificate complexity $C(f)$ and an input $x^{\star}$, we design an algorithm that outputs a size-$C(f)$ subset of $x^{\star}$ certifying the value of $f(x^{\star})$. Our algorithm makes $O(C(f) \cdot \log n)$ queries to $f$, which matches the information-theoretic lower bound for this ... more >>>