This paper studies the learnability of branching programs and small depth
circuits with modular and threshold gates in both the exact and PAC learning
models with and without membership queries. Some of the results extend earlier
works in [GG95,ERR95,BTW95]. The main results are as follows. For
branching programs we ...
more >>>
We address well-studied problems concerning the learnability of parities and halfspaces in the presence of classification noise.
Learning of parities under the uniform distribution with random classification noise,also called the noisy parity problem is a famous open problem in computational learning. We reduce a number of basic problems regarding ... more >>>
We study the polynomial reconstruction problem for low-degree
multivariate polynomials over finite fields. In the GF[2] version of this problem, we are given a set of points on the hypercube and target values $f(x)$ for each of these points, with the promise that there is a polynomial over GF[2] of ...
more >>>