Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with hardness of approximation:
TR97-031 | 9th September 1997
Oded Goldreich

On the Limits of Non-Approximability of Lattice Problems

Revisions: 2

We show simple constant-round interactive proof systems for
problems capturing the approximability, to within a factor of $\sqrt{n}$,
of optimization problems in integer lattices; specifically,
the closest vector problem (CVP), and the shortest vector problem (SVP).
These interactive proofs are for the ``coNP direction'';
that is, ... more >>>

TR98-016 | 24th March 1998
Daniele Micciancio

The Shortest Vector in a Lattice is Hard to Approximate to within Some Constant.

We show that computing the approximate length of the shortest vector
in a lattice within a factor c is NP-hard for randomized reductions
for any constant c<sqrt(2). We also give a deterministic reduction
based on a number theoretic conjecture.

more >>>

TR99-043 | 5th November 1999
Venkatesan Guruswami

The Approximability of Set Splitting Problems and Satisfiability Problems with no Mixed Clauses

We prove hardness results for approximating set splitting problems and
also instances of satisfiability problems which have no ``mixed'' clauses,
i.e all clauses have either all their literals unnegated or all of them
negated. Recent results of Hastad imply tight hardness results for set
splitting when all sets ... more >>>

TR01-094 | 3rd December 2001
Jonas Holmerin

Vertex Cover on 4-regular Hyper-graphs is Hard to Approximate Within 2 - \epsilon

We prove that Minimum vertex cover on 4-regular hyper-graphs (or
in other words, hitting set where all sets have size exactly 4),
is hard to approximate within 2 - \epsilon.
We also prove that the maximization version, in which we
are allowed to pick ... more >>>

TR02-027 | 30th April 2002
Irit Dinur, Venkatesan Guruswami, Subhash Khot

Vertex Cover on k-Uniform Hypergraphs is Hard to Approximate within Factor (k-3-\epsilon)

Given a $k$-uniform hypergraph, the E$k$-Vertex-Cover problem is
to find a minimum subset of vertices that ``hits'' every edge. We
show that for every integer $k \geq 5$, E$k$-Vertex-Cover is
NP-hard to approximate within a factor of $(k-3-\epsilon)$, for
an arbitrarily small constant $\epsilon > 0$.

This almost matches the ... more >>>

TR03-035 | 21st May 2003
Eran Halperin, Guy Kortsarz, Robert Krauthgamer

Tight lower bounds for the asymmetric k-center problem

In the {\sc $k$-center} problem, the input is a bound $k$
and $n$ points with the distance between every two of them,
such that the distances obey the triangle inequality.
The goal is to choose a set of $k$ points to serve as centers,
so that the maximum distance ... more >>>

TR05-113 | 12th September 2005
Bernhard Fuchs

On the Hardness of Range Assignment Problems

We investigate the computational hardness of the {\sc Connectivity},
the {\sc Strong Connectivity} and the {\sc Broadcast} type of Range
Assignment Problems in $\R^2$ and $\R^3$.
We present new reductions for the {\sc Connectivity} problem, which
are easily adapted to suit the other two problems. All reductions
are considerably simpler ... more >>>

TR05-127 | 5th November 2005
Vitaly Feldman

Hardness of Approximate Two-level Logic Minimization and PAC Learning with Membership Queries

Revisions: 1

Producing a small DNF expression consistent with given data is a
classical problem in computer science that occurs in a number of forms and
has numerous applications. We consider two standard variants of this
problem. The first one is two-level logic minimization or finding a minimal
more >>>

TR06-032 | 25th February 2006
Vitaly Feldman

Optimal Hardness Results for Maximizing Agreements with Monomials

We consider the problem of finding a monomial (or a term) that maximizes the agreement rate with a given set of examples over the Boolean hypercube. The problem originates in learning and is referred to as {\em agnostic learning} of monomials. Finding a monomial with the highest agreement rate was ... more >>>

TR06-059 | 3rd May 2006
Vitaly Feldman, Parikshit Gopalan, Subhash Khot, Ashok Kumar Ponnuswami

New Results for Learning Noisy Parities and Halfspaces

We address well-studied problems concerning the learnability of parities and halfspaces in the presence of classification noise.

Learning of parities under the uniform distribution with random classification noise,also called the noisy parity problem is a famous open problem in computational learning. We reduce a number of basic problems regarding ... more >>>

TR06-061 | 5th May 2006
Venkatesan Guruswami, Prasad Raghavendra

Hardness of Learning Halfspaces with Noise

Learning an unknown halfspace (also called a perceptron) from
labeled examples is one of the classic problems in machine learning.
In the noise-free case, when a halfspace consistent with all the
training examples exists, the problem can be solved in polynomial
time using linear programming. ... more >>>

TR06-109 | 29th August 2006
Julia Chuzhoy, Sanjeev Khanna

Hardness of Directed Routing with Congestion

Given a graph G and a collection of source-sink pairs in G, what is the least integer c such that each source can be connected by a path to its sink, with at most c paths going through an edge? This is known as the congestion minimization problem, and the ... more >>>

TR06-141 | 22nd November 2006
Venkatesan Guruswami, Kunal Talwar

Hardness of Low Congestion Routing in Directed Graphs

We prove a strong inapproximability result for routing on directed
graphs with low congestion. Given as input a directed graph on $N$
vertices and a set of source-destination pairs that can be connected
via edge-disjoint paths, we prove that it is hard, assuming NP
doesn't have $n^{O(\log\log n)}$ time randomized ... more >>>

TR07-073 | 3rd August 2007
Parikshit Gopalan, Subhash Khot, Rishi Saket

Hardness of Reconstructing Multivariate Polynomials over Finite Fields

We study the polynomial reconstruction problem for low-degree
multivariate polynomials over finite fields. In the GF[2] version of this problem, we are given a set of points on the hypercube and target values $f(x)$ for each of these points, with the promise that there is a polynomial over GF[2] of ... more >>>

TR07-101 | 10th September 2007
Patrick Briest, Martin Hoefer, Piotr Krysta

Stackelberg Network Pricing Games

Revisions: 1

We study a multi-player one-round game termed Stackelberg Network Pricing Game, in which a leader can set prices for a subset of m pricable edges in a graph. The other edges have a fixed cost. Based on the leader's decision one or more followers optimize a polynomial-time solvable combinatorial minimization ... more >>>

TR07-105 | 21st September 2007
Jelani Nelson

A Note on Set Cover Inapproximability Independent of Universe Size

Revisions: 1

In the set cover problem we are given a collection of $m$ sets whose union covers $[n] = \{1,\ldots,n\}$ and must find a minimum-sized subcollection whose union still covers $[n]$. We investigate the approximability of set cover by an approximation ratio that depends only on $m$ and observe that, for ... more >>>

TR07-113 | 15th November 2007
Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal Talwar, Lisa Zhang

Inapproximability of edge-disjoint paths and low congestion routing on undirected graphs

In the undirected Edge-Disjoint Paths problem with Congestion
(EDPwC), we are given an undirected graph with $V$ nodes, a set of
terminal pairs and an integer $c$. The objective is to route as many
terminal pairs as possible, subject to the constraint that at most
$c$ demands can be routed ... more >>>

TR08-013 | 16th January 2008
Anup Rao

Parallel Repetition in Projection Games and a Concentration Bound

In a two player game, a referee asks two cooperating players (who are
not allowed to communicate) questions sampled from some distribution
and decides whether they win or not based on some predicate of the
questions and their answers. The parallel repetition of the game is
the game in which ... more >>>

TR08-071 | 6th August 2008
Dana Moshkovitz, Ran Raz

Two Query PCP with Sub-Constant Error

We show that the NP-Complete language 3Sat has a PCP
verifier that makes two queries to a proof of almost-linear size
and achieves sub-constant probability of error $o(1)$. The
verifier performs only projection tests, meaning that the answer
to the first query determines at most one accepting answer to the
more >>>

TR09-099 | 16th October 2009
Venkatesan Guruswami, Ali Kemal Sinop

Improved Inapproximability Results for Maximum k-Colorable Subgraph

Revisions: 1

We study the maximization version of the fundamental graph coloring problem. Here the goal is to color the vertices of a $k$-colorable graph with $k$ colors so that a maximum fraction of edges are properly colored (i.e., their endpoints receive different colors). A random $k$-coloring properly colors an expected fraction ... more >>>

TR10-063 | 12th April 2010
Venkatesan Guruswami, Yuan Zhou

Tight Bounds on the Approximability of Almost-satisfiable Horn SAT and Exact Hitting Set}

Revisions: 1

We study the approximability of two natural Boolean constraint satisfaction problems: Horn satisfiability and exact hitting set. Under the Unique Games conjecture, we prove the following optimal inapproximability and approximability results for finding an assignment satisfying as many constraints as possible given a {\em
near-satisfiable} instance.

\item ... more >>>

TR10-111 | 14th July 2010
Venkatesan Guruswami, Ali Kemal Sinop

The complexity of finding independent sets in bounded degree (hyper)graphs of low chromatic number

We prove almost tight hardness results for finding independent sets in bounded degree graphs and hypergraphs that admit a good
coloring. Our specific results include the following (where $\Delta$, assumed to be a constant, is a bound on the degree, and
$n$ is the number of vertices):

... more >>>

TR12-020 | 3rd March 2012
Daniele Micciancio

Inapproximability of the Shortest Vector Problem: Toward a Deterministic Reduction

Revisions: 1

We prove that the Shortest Vector Problem (SVP) on point lattices is NP-hard to approximate for any constant factor under polynomial time reverse unfaithful random reductions. These are probabilistic reductions with one-sided error that produce false negatives with small probability, but are guaranteed not to produce false positives regardless of ... more >>>

TR13-071 | 8th May 2013
Venkatesan Guruswami, Sushant Sachdeva, Rishi Saket

Inapproximability of Minimum Vertex Cover on $k$-uniform $k$-partite Hypergraphs

We study the problem of computing the minimum vertex cover on $k$-uniform $k$-partite hypergraphs when the $k$-partition is given. On bipartite graphs ($k=2$), the minimum vertex cover can be computed in polynomial time. For $k \ge 3$, this problem is known to be NP-hard. For general $k$, the problem was ... more >>>

TR13-122 | 5th September 2013
Irit Dinur, Venkatesan Guruswami

PCPs via low-degree long code and hardness for constrained hypergraph coloring

Revisions: 1

We develop new techniques to incorporate the recently proposed ``short code" (a low-degree version of the long code) into the construction and analysis of PCPs in the classical ``Label Cover + Fourier Analysis'' framework. As a result, we obtain more size-efficient PCPs that yield improved hardness results for approximating CSPs ... more >>>

TR13-148 | 26th October 2013
Irit Dinur, Igor Shinkar

On the Conditional Hardness of Coloring a 4-colorable Graph with Super-Constant Number of Colors

For $3 \leq q < Q$ we consider the $\text{ApproxColoring}(q,Q)$ problem of deciding for a given graph $G$ whether $\chi(G) \leq q$ or $\chi(G) \geq Q$. It was show in [DMR06] that the problem $\text{ApproxColoring}(q,Q)$ is NP-hard for $q=3,4$ and arbitrary large constant $Q$ under variants of the Unique Games ... more >>>

TR14-170 | 10th December 2014
Yael Tauman Kalai, Ran Raz

On the Space Complexity of Linear Programming with Preprocessing

Revisions: 1

Linear Programs are abundant in practice, and tremendous effort has been put into designing efficient algorithms for such problems, resulting with very efficient (polynomial time) algorithms. A fundamental question is: what is the space complexity of Linear Programming?

It is widely believed that (even approximating) Linear Programming requires a large ... more >>>

TR15-013 | 28th January 2015
Subhash Khot, Igor Shinkar

On Hardness of Approximating the Parameterized Clique Problem

In the $Gap-clique(k, \frac{k}{2})$ problem, the input is an $n$-vertex graph $G$, and the goal is to decide whether $G$ contains a clique of size $k$ or contains no clique of size $\frac{k}{2}$. It is an open question in the study of fixed parameterized tractability whether the $Gap-clique(k, \frac{k}{2})$ problem ... more >>>

TR15-155 | 22nd September 2015
Venkatesan Guruswami, Euiwoong Lee

Nearly Optimal NP-Hardness of Unique Coverage

The {\em Unique Coverage} problem, given a universe $V$ of elements and a collection $E$ of subsets of $V$, asks to find $S \subseteq V$ to maximize the number of $e \in E$ that intersects $S$ in {\em exactly one} element. When each $e \in E$ has cardinality at most ... more >>>

TR16-029 | 7th March 2016
Joshua Brakensiek, Venkatesan Guruswami

New hardness results for graph and hypergraph colorings

Finding a proper coloring of a $t$-colorable graph $G$ with $t$ colors is a classic NP-hard problem when $t\ge 3$. In this work, we investigate the approximate coloring problem in which the objective is to find a proper $c$-coloring of $G$ where $c \ge t$. We show that for all ... more >>>

ISSN 1433-8092 | Imprint