The current proof of the PCP Theorem (i.e., NP=PCP(log,O(1)))
is very complicated.
One source of difficulty is the technically involved
analysis of low-degree tests.
Here, we refer to the difficulty of obtaining strong results
regarding low-degree tests; namely, results of the type obtained and
used by ...
more >>>
Pin & Weil [PW95] characterized the automata of existentially
first-order definable languages. We will use this result for the following
characterization of the complexity class NP. Assume that the
Polynomial-Time Hierarchy does not collapse. Then a regular language
L characterizes NP as an unbalanced polynomial-time leaf language
if and ...
more >>>
A Uniform Generation procedure for $NP$ is an
algorithm which given any input in a fixed NP-language, outputs a uniformly
distributed NP-witness for membership of the input in the language.
We present a Uniform Generation procedure for $NP$ that runs in probabilistic
polynomial-time with an NP-oracle. This improves upon ...
more >>>
This paper strengthens the low-error PCP characterization of NP, coming
closer to the ultimate BGLR conjecture. Namely, we prove that witnesses for
membership in any NP language can be verified with a constant
number of accesses, and with an error probability exponentially
small in the ...
more >>>
Property testing is a relaxation of decision problems
in which it is required to distinguish {\sc yes}-instances
(i.e., objects having a predetermined property) from instances
that are far from any {\sc yes}-instance.
We presents three theorems regarding testing graph
properties in the adjacency matrix representation. ...
more >>>
We consider some problems about pairs of disjoint $NP$ sets.
The theory of these sets with a natural concept of reducibility
is, on the one hand, closely related to the theory of proof
systems for propositional calculus, and, on the other, it
resembles the theory of NP completeness. Furthermore, such
more >>>
The notion of promise problems was introduced and initially studied
by Even, Selman and Yacobi
(Information and Control, Vol.~61, pages 159-173, 1984).
In this article we survey some of the applications that this
notion has found in the twenty years that elapsed.
These include the notion ...
more >>>
We highlight a common theme in four relatively recent works
that establish remarkable results by an iterative approach.
Starting from a trivial construct,
each of these works applies an ingeniously designed
sequence of iterations that yields the desired result,
which is highly non-trivial. Furthermore, in each iteration,
more >>>
<p> We study the question of the existence of non-mitotic sets in NP. We show under various hypotheses that:</p>
<ul>
<li>1-tt-mitoticity and m-mitoticity differ on NP.</li>
<li>1-tt-reducibility and m-reducibility differ on NP.</li>
<li>There exist non-T-autoreducible sets in NP (by a result from Ambos-Spies, these sets are neither ...
more >>>
We study the average-case hardness of the class NP against
deterministic polynomial time algorithms. We prove that there exists
some constant $\mu > 0$ such that if there is some language in NP
for which no deterministic polynomial time algorithm can decide L
correctly on a $1- (log n)^{-\mu}$ fraction ...
more >>>
The proof of Toda's celebrated theorem that the polynomial hierarchy is contained in $\P^\numP$ relies on the fact that, under mild technical conditions on the complexity class $\mathcal{C}$, we have $\exists \,\mathcal{C} \subset \BP \cdot \oplus \,\mathcal{C}$. More concretely, there is a randomized reduction which transforms nonempty sets and the ... more >>>
We study the Isomorphism Conjecture proposed by Berman and Hartmanis.
It states that all sets complete for NP under polynomial-time many-one
reductions are P-isomorphic to each other. From previous research
it has been widely believed that all NP-complete sets are reducible
each other by one-to-one and length-increasing polynomial-time
reductions, but ...
more >>>
We prove that NP$\ne$coNP and coNP$\nsubseteq$MA in the number-on-forehead model of multiparty communication complexity for up to $k=(1-\epsilon)\log n$ players, where $\epsilon>0$ is any constant. Specifically, we construct a function $F:(\zoon)^k\to\zoo$ with co-nondeterministic
complexity $O(\log n)$ and Merlin-Arthur
complexity $n^{\Omega(1)}$.
The problem was open for $k\geq3$.
We introduce a new public quantum interactive proof system, namely qAM, by augmenting the verifier with a fixed-size quantum register in Arthur-Merlin game. We focus on space-bounded verifiers, and compare our new public system with private-coin interactive proof (IP) system in the same space bounds. We show that qAM systems ... more >>>
Ehrenfeucht-Fraisse games and their generalizations have been quite successful in finite model theory and yield various inexpressibility results. However, for key problems such as P $\ne$ NP or NP $\ne$ coNP no progress has been achieved using the games. We show that for these problems it is already hard to ... more >>>
We study the autoreducibility and mitoticity of complete sets for NP and other complexity classes, where the main focus is on logspace reducibilities. In particular, we obtain:
- For NP and all other classes of the PH: each logspace many-one-complete set is logspace Turing-autoreducible.
- For P, the delta-levels of ...
more >>>
Quantified Boolean Formulas (QBFs) extend propositional formulas with Boolean quantifiers. Working with QBF differs from propositional logic in its quantifier handling, but as propositional satisfiability (SAT) is a subproblem of QBF, all SAT hardness in solving and proof complexity transfers to QBF. This makes it difficult to analyse efforts dealing ... more >>>
Commuting local Hamiltonians provide a testing ground for studying many of the most interesting open questions in quantum information theory, including the quantum PCP conjecture and the existence of area laws. Although they are a simplified model of quantum computation, the status of the commuting local Hamiltonian problem remains largely ... more >>>