Venkatesan Guruswami, Johan Hastad, Madhu Sudan

We introduce the notion of covering complexity of a probabilistic

verifier. The covering complexity of a verifier on a given input is

the minimum number of proofs needed to ``satisfy'' the verifier on

every random string, i.e., on every random string, at least one of the

given proofs must be ...
more >>>

Eran Halperin, Guy Kortsarz, Robert Krauthgamer

In the {\sc $k$-center} problem, the input is a bound $k$

and $n$ points with the distance between every two of them,

such that the distances obey the triangle inequality.

The goal is to choose a set of $k$ points to serve as centers,

so that the maximum distance ...
more >>>

Irit Dinur, Elchanan Mossel, Oded Regev

We study the approximate-coloring(q,Q) problem: Given a graph G, decide

whether \chi(G) \le q or \chi(G)\ge Q. We derive conditional

hardness for this problem for any constant 3\le q < Q. For q \ge

4, our result is based on Khot's 2-to-1 conjecture [Khot'02].

For q=3, we base our hardness ...
more >>>

David Zuckerman

A randomness extractor is an algorithm which extracts randomness from a low-quality random source, using some additional truly random bits. We construct new extractors which require only log n + O(1) additional random bits for sources with constant entropy rate. We further construct dispersers, which are similar to one-sided extractors, ... more >>>

Guy Kindler, Ryan O'Donnell, Subhash Khot, Elchanan Mossel

In this paper we show a reduction from the Unique Games problem to the problem of approximating MAX-CUT to within a factor of $\GW + \eps$, for all $\eps > 0$; here $\GW \approx .878567$ denotes the approximation ratio achieved by the Goemans-Williamson algorithm~\cite{GW95}. This implies that if the Unique ... more >>>

Eric Allender, Lisa Hellerstein, Paul McCabe, Michael Saks

For circuit classes R, the fundamental computational problem, Min-R,

asks for the minimum R-size of a boolean function presented as a truth

table. Prominent examples of this problem include Min-DNF, and

Min-Circuit (also called MCSP). We begin by presenting a new reduction

proving that Min-DNF is NP-complete. It is significantly ...
more >>>

Vitaly Feldman

We consider the problem of finding a monomial (or a term) that maximizes the agreement rate with a given set of examples over the Boolean hypercube. The problem originates in learning and is referred to as {\em agnostic learning} of monomials. Finding a monomial with the highest agreement rate was ... more >>>

Jan Arpe, Bodo Manthey

Given a set of monomials, the Minimum AND-Circuit problem asks for a

circuit that computes these monomials using AND-gates of fan-in two and

being of minimum size. We prove that the problem is not polynomial time

approximable within a factor of less than 1.0051 unless P = NP, even if

more >>>

Patrick Briest, Piotr Krysta

We investigate non-parametric unit-demand pricing problems, in which the goal is to find revenue maximizing prices for a set of products based on consumer profiles obtained, e.g., from an e-Commerce website. A consumer profile consists of a number of non-zero budgets and a ranking of all the products the consumer ... more >>>

Per Austrin

We show that, assuming the Unique Games Conjecture, it is NP-hard to approximate Max 2-Sat within $\alpha_{LLZ}^{-}+\epsilon$, where $0.9401 < \alpha_{LLZ}^{-} < 0.9402$ is the believed approximation ratio of the algorithm of Lewin, Livnat and Zwick.

This result is surprising considering the fact that balanced instances of Max 2-Sat, i.e. ... more >>>

Bodo Manthey

A cycle cover of a graph is a set of cycles such that every vertex is

part of exactly one cycle. An L-cycle cover is a cycle cover in which

the length of every cycle is in the set L. The weight of a cycle cover

of an edge-weighted graph ...
more >>>

Kevin Dick, Chris Umans

We give improved inapproximability results for some minimization problems in the second level of the Polynomial-Time Hierarchy. Extending previous work by Umans [Uma99], we show that several variants of DNF minimization are $\Sigma_2^p$-hard to approximate to within factors of $n^{1/3-\epsilon}$ and $n^{1/2-\epsilon}$ (where the previous results achieved $n^{1/4 - \epsilon}$), ... more >>>

Mahdi Cheraghchi, Johan Hastad, Marcus Isaksson, Ola Svensson

We study constraint satisfaction problems on the domain $\{-1,1\}$, where the given constraints are homogeneous linear threshold predicates. That is, predicates of the form $\mathrm{sgn}(w_1 x_1 + \cdots + w_n x_n)$ for some positive integer weights $w_1, \dots, w_n$. Despite their simplicity, current techniques fall short of providing a classification ... more >>>

Daniele Micciancio

The Minimum Distance Problem (MDP), i.e., the computational task of evaluating (exactly or approximately) the minimum distance of a linear code, is a well known NP-hard problem in coding theory. A key element in essentially all known proofs that MDP is NP-hard is the construction of a combinatorial object that ... more >>>

Venkatesan Guruswami, Euiwoong Lee

We study two natural extensions of Constraint Satisfaction Problems (CSPs). {\em Balance}-Max-CSP requires that in any feasible assignment each element in the domain is used an equal number of times. An instance of {\em Hard}-Max-CSP consists of {\em soft constraints} and {\em hard constraints}, and the goal is to maximize ... more >>>

Subhash Khot, Rishi Saket

We show that it is quasi-NP-hard to color $2$-colorable $12$-uniform hypergraphs with $2^{(\log n)^{\Omega(1) }}$ colors where $n$ is the number of vertices. Previously, Guruswami et al. [GHHSV14] showed that it is quasi-NP-hard to color $2$-colorable $8$-uniform hypergraphs with $2^{2^{\Omega(\sqrt{\log \log n})}}$ colors. Their result is obtained by composing a ... more >>>

Sangxia Huang

We show that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with $2^{(\log N)^{1/4-o(1)}}$ colors, where $N$ is the number of vertices. There has been much focus on hardness of hypergraph coloring recently. Guruswami, H{\aa}stad, Harsha, Srinivasan and Varma showed that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with ... more >>>

Marek Karpinski

We present in this paper some of the recent techniques and methods for proving best up to now explicit approximation hardness bounds for metric symmetric and asymmetric Traveling Salesman Problem (TSP) as well as related problems of Shortest Superstring and Maximum Compression. We attempt to shed some light on the ... more >>>

Subhash Khot, Rishi Saket

This paper studies how well the standard LP relaxation approximates a $k$-ary constraint satisfaction problem (CSP) on label set $[L]$. We show that, assuming the Unique Games Conjecture, it achieves an approximation within $O(k^3\cdot \log L)$ of the optimal approximation factor. In particular we prove the following hardness result: let ... more >>>

Joshua Brakensiek, Venkatesan Guruswami

We give a family of dictatorship tests with perfect completeness and low-soundness for 2-to-2 constraints. The associated 2-to-2 conjecture has been the basis of some previous inapproximability results with perfect completeness. However, evidence towards the conjecture in the form of integrality gaps even against weak semidefinite programs has been elusive. ... more >>>

Venkatesan Guruswami, Rishi Saket

A hypergraph is $k$-rainbow colorable if there exists a vertex coloring using $k$ colors such that each hyperedge has all the $k$ colors. Unlike usual hypergraph coloring, rainbow coloring becomes harder as the number of colors increases. This work studies the rainbow colorability of hypergraphs which are guaranteed to be ... more >>>

Subhash Khot, Dor Minzer, Muli Safra

We prove that pseudorandom sets in Grassmann graph have near-perfect expansion as hypothesized in [DKKMS-2]. This completes

the proof of the $2$-to-$2$ Games Conjecture (albeit with imperfect completeness) as proposed in [KMS, DKKMS-1], along with a

contribution from [BKT].

The Grassmann graph $Gr_{global}$ contains induced subgraphs $Gr_{local}$ that are themselves ... more >>>

Lijie Chen

In this paper we study the (Bichromatic) Maximum Inner Product Problem (Max-IP), in which we are given sets $A$ and $B$ of vectors, and the goal is to find $a \in A$ and $b \in B$ maximizing inner product $a \cdot b$. Max-IP is very basic and serves ...
more >>>

Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., Pasin Manurangsi

The $k$-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over $\mathbb F_2$, which can be stated as follows: given a generator matrix $\mathbf A$ and an integer $k$, determine whether the code generated by $\mathbf A$ has distance at most $k$. Here, $k$ ... more >>>