Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > MAX-CUT:
Reports tagged with Max-Cut:
TR98-064 | 6th November 1998
Wenceslas Fernandez de la Vega, Marek Karpinski

Polynomial Time Approximation of Dense Weighted Instances of MAX-CUT

We give the first polynomial time approximability characterization
of dense weighted instances of MAX-CUT, and some other dense
weighted NP-hard problems in terms of their empirical weight
distributions. This gives also the first almost sharp
characterization of inapproximability of unweighted 0,1
MAX-BISECTION instances ... more >>>


TR98-065 | 6th November 1998
Piotr Berman, Marek Karpinski

On Some Tighter Inapproximability Results, Further Improvements

Improved inaproximability results are given, including the
best up to date explicit approximation thresholds for bounded
occurence satisfiability problems, like MAX-2SAT and E2-LIN-2,
and problems in bounded degree graphs, like MIS, Node Cover
and MAX CUT. We prove also for the first time inapproximability
more >>>


TR00-021 | 19th April 2000
Uriel Feige, Marek Karpinski, Michael Langberg

Improved Approximation of MAX-CUT on Graphs of Bounded Degree

We analyze the addition of a simple local improvement step to various known
randomized approximation algorithms.
Let $\alpha \simeq 0.87856$ denote the best approximation ratio currently
known for the Max Cut problem on general graphs~\cite{GW95}.
We consider a semidefinite relaxation of the Max Cut problem,
round it using the ... more >>>


TR00-043 | 21st June 2000
Uriel Feige, Marek Karpinski, Michael Langberg

A Note on Approximating MAX-BISECTION on Regular Graphs


We design a $0.795$ approximation algorithm for the Max-Bisection problem
restricted to regular graphs. In the case of three regular graphs our
results imply an approximation ratio of $0.834$.

more >>>

TR00-051 | 14th July 2000
Marek Karpinski, Miroslaw Kowaluk, Andrzej Lingas

Approximation Algorithms for MAX-BISECTION on Low Degree Regular Graphs and Planar Graphs

The max-bisection problem is to find a partition of the vertices of a
graph into two equal size subsets that maximizes the number of edges with
endpoints in both subsets.
We obtain new improved approximation ratios for the max-bisection problem on
the low degree $k$-regular graphs for ... more >>>


TR01-042 | 31st May 2001
Marek Karpinski

Approximating Bounded Degree Instances of NP-Hard Problems

We present some of the recent results on computational complexity
of approximating bounded degree combinatorial optimization problems. In
particular, we present the best up to now known explicit nonapproximability
bounds on the very small degree optimization problems which are of
particular importance on the intermediate stages ... more >>>


TR01-053 | 17th July 2001
Piotr Berman, Marek Karpinski

Efficient Amplifiers and Bounded Degree Optimization

This paper studies the existence of efficient (small size)
amplifiers for proving explicit inaproximability results for bounded degree
and bounded occurrence combinatorial optimization problems, and gives
an explicit construction for such amplifiers. We use this construction
also later to improve the currently best known approximation lower bounds
more >>>


TR01-100 | 14th December 2001
Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, Marek Karpinski

Random Sampling and Approximation of MAX-CSP Problems

We present a new efficient sampling method for approximating
r-dimensional Maximum Constraint Satisfaction Problems, MAX-rCSP, on
n variables up to an additive error \epsilon n^r.We prove a new
general paradigm in that it suffices, for a given set of constraints,
to pick a small uniformly random ... more >>>


TR02-044 | 16th July 2002
Wenceslas Fernandez de la Vega, Marek Karpinski

A Polynomial Time Approximation Scheme for Subdense MAX-CUT

We prove that the subdense instances of MAX-CUT of average
degree Omega(n/logn) posses a polynomial time approximation scheme (PTAS).
We extend this result also to show that the instances of general 2-ary
maximum constraint satisfaction problems (MAX-CSP) of the same average
density have PTASs. Our results ... more >>>


TR03-030 | 27th February 2003
Amin Coja-Oghlan, Andreas Goerdt, André Lanka, Frank Schädlich

Certifying Unsatisfiability of Random 2k-SAT Formulas using Approximation Techniques

Abstract. It is known that random k-SAT formulas with at least
(2^k*ln2)*n random clauses are unsatisfiable with high probability. This
result is simply obtained by bounding the expected number of satisfy-
ing assignments of a random k-SAT instance by an expression tending
to 0 when n, the number of variables ... more >>>


TR04-032 | 5th February 2004
Ryan Williams

A new algorithm for optimal constraint satisfaction and its implications

We present a novel method for exactly solving (in fact, counting solutions to) general constraint satisfaction optimization with at most two variables per constraint (e.g. MAX-2-CSP and MIN-2-CSP), which gives the first exponential improvement over the trivial algorithm; more precisely, it is a constant factor improvement in the base of ... more >>>


TR05-101 | 20th September 2005
Guy Kindler, Ryan O'Donnell, Subhash Khot, Elchanan Mossel

Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs?

In this paper we show a reduction from the Unique Games problem to the problem of approximating MAX-CUT to within a factor of $\GW + \eps$, for all $\eps > 0$; here $\GW \approx .878567$ denotes the approximation ratio achieved by the Goemans-Williamson algorithm~\cite{GW95}. This implies that if the Unique ... more >>>


TR06-101 | 22nd August 2006
Wenceslas Fernandez de la Vega, Marek Karpinski

Approximation Complexity of Nondense Instances of MAX-CUT

We prove existence of approximation schemes for instances of MAX-CUT with $\Omega(\frac{n^2}{\Delta})$ edges which work in $2^{O^\thicksim(\frac{\Delta}{\varepsilon^2})}n^{O(1)}$ time. This entails in particular existence of quasi-polynomial approximation schemes (QPTASs) for mildly sparse instances of MAX-CUT with $\Omega(\frac{n^2}{\operatorname{polylog} n})$ edges. The result depends on new sampling method for smoothed linear programs that ... more >>>


TR06-104 | 25th August 2006
Wenceslas Fernandez de la Vega, Marek Karpinski

On the Sample Complexity of MAX-CUT

We give a simple proof for the sample complexity bound $O~(1/\epsilon^4)$ of absolute approximation of MAX-CUT. The proof depends on a new analysis method for linear programs (LPs) underlying MAX-CUT which could be also of independent interest.

more >>>

TR07-043 | 7th May 2007
Uriel Feige, Guy Kindler, Ryan O'Donnell

Understanding Parallel Repetition Requires Understanding Foams

Motivated by the study of Parallel Repetition and also by the Unique
Games Conjecture, we investigate the value of the ``Odd Cycle Games''
under parallel repetition. Using tools from discrete harmonic
analysis, we show that after $d$ rounds on the cycle of length $m$,
the value of the game is ... more >>>


TR09-129 | 30th November 2009
Boaz Barak, Moritz Hardt, Thomas Holenstein, David Steurer

Subsampling Semidefinite Programs and Max-Cut on the Sphere

Revisions: 1

We study the question of whether the value of mathematical programs such as
linear and semidefinite programming hierarchies on a graph $G$, is preserved
when taking a small random subgraph $G'$ of $G$. We show that the value of the
Goemans-Williamson (1995) semidefinite program (SDP) for \maxcut of $G'$ is
more >>>


TR15-158 | 27th September 2015
Ofer Grossman, Dana Moshkovitz

Amplification and Derandomization Without Slowdown

We present techniques for decreasing the error probability of randomized algorithms and for converting randomized algorithms to deterministic (non-uniform) algorithms. Unlike most existing techniques that involve repetition of the randomized algorithm, and hence a slowdown, our techniques produce algorithms with a similar run-time to the original randomized algorithms.

The ... more >>>




ISSN 1433-8092 | Imprint