Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with bias:
TR07-132 | 8th December 2007
Emanuele Viola

The sum of d small-bias generators fools polynomials of degree d

We prove that the sum of $d$ small-bias generators $L
: \F^s \to \F^n$ fools degree-$d$ polynomials in $n$
variables over a prime field $\F$, for any fixed
degree $d$ and field $\F$, including $\F = \F_2 =

Our result improves on both the work by Bogdanov and
Viola ... more >>>

TR15-005 | 5th January 2015
Chin Ho Lee, Emanuele Viola

Some limitations of the sum of small-bias distributions

Revisions: 1

We exhibit $\epsilon$-biased distributions $D$
on $n$ bits and functions $f\colon \{0,1\}^n
\to \{0,1\}$ such that the xor of two independent
copies ($D+D$) does not fool $f$, for any of the
following choices:

1. $\epsilon = 2^{-\Omega(n)}$ and $f$ is in P/poly;

2. $\epsilon = 2^{-\Omega(n/\log n)}$ and $f$ is ... more >>>

TR18-081 | 20th April 2018
Abhishek Bhrushundi, Prahladh Harsha, Pooya Hatami, Swastik Kopparty, Mrinal Kumar

On Multilinear Forms: Bias, Correlation, and Tensor Rank

Revisions: 1

In this paper, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over $GF(2)= \{0,1\}$. We show the following results for multilinear forms and tensors.

1. Correlation bounds : We show that a random $d$-linear ... more >>>

TR18-084 | 24th April 2018
Iftach Haitner, Nikolaos Makriyannis, Eran Omri

On the Complexity of Fair Coin Flipping

A two-party coin-flipping protocol is $\varepsilon$-fair if no efficient adversary can bias the output of the honest party (who always outputs a bit, even if the other party aborts) by more than $\varepsilon$. Cleve [STOC '86] showed that $r$-round $o(1/r)$-fair coin-flipping protocols do not exist. Awerbuch et al. [Manuscript '85] ... more >>>

ISSN 1433-8092 | Imprint