Leonid Gurvits

Let $p(x_1,...,x_n) =\sum_{ (r_1,...,r_n) \in I_{n,n} } a_{(r_1,...,r_n) } \prod_{1 \leq i \leq n} x_{i}^{r_{i}}$

be homogeneous polynomial of degree $n$ in $n$ real variables with integer nonnegative coefficients.

The support of such polynomial $p(x_1,...,x_n)$

is defined as $supp(p) = \{(r_1,...,r_n) \in I_{n,n} : a_{(r_1,...,r_n)} \neq 0 ...
more >>>

Andrej Bogdanov, Emanuele Viola

We present a new approach to constructing pseudorandom generators that fool low-degree polynomials over finite fields, based on the Gowers norm. Using this approach, we obtain the following main constructions of explicitly computable generators $G : \F^s \to \F^n$ that fool polynomials over a prime field $\F$:

\begin{enumerate}

\item a ...
more >>>

Emanuele Viola

We prove that the sum of $d$ small-bias generators $L

: \F^s \to \F^n$ fools degree-$d$ polynomials in $n$

variables over a prime field $\F$, for any fixed

degree $d$ and field $\F$, including $\F = \F_2 =

{0,1}$.

Our result improves on both the work by Bogdanov and

Viola ...
more >>>

Nicola Galesi, Massimo Lauria

We prove that Polynomial Calculus and Polynomial Calculus with Resolution are not automatizable, unless W[P]-hard problems are fixed parameter tractable by one-side error randomized algorithms. This extends to Polynomial Calculus the analogous result obtained for Resolution by Alekhnovich and Razborov (SIAM J. Computing, 38(4), 2008).

more >>>Frederic Green, Daniel Kreymer, Emanuele Viola

We report on some initial results of a brute-force search for determining the maximum correlation between degree-$d$ polynomials modulo $p$ and the $n$-bit mod $q$ function. For various settings of the parameters $n,d,p,$ and $q$, our results indicate that symmetric polynomials yield the maximum correlation. This contrasts with the previously-analyzed ... more >>>

Rocco Servedio, Emanuele Viola

We highlight the special case of Valiant's rigidity

problem in which the low-rank matrices are truth-tables

of sparse polynomials. We show that progress on this

special case entails that Inner Product is not computable

by small $\acz$ circuits with one layer of parity gates

close to the inputs. We then ...
more >>>

Frederic Green, Daniel Kreymer, Emanuele Viola

We show that degree-$d$ block-symmetric polynomials in

$n$ variables modulo any odd $p$ correlate with parity

exponentially better than degree-$d$ symmetric

polynomials, if $n \ge c d^2 \log d$ and $d \in [0.995

\cdot p^t - 1,p^t)$ for some $t \ge 1$. For these

infinitely many degrees, our result ...
more >>>

Emanuele Viola

We draw two incomplete, biased maps of challenges in

computational complexity lower bounds. Our aim is to put

these challenges in perspective, and to present some

connections which do not seem widely known.

Peter Floderus, Andrzej Lingas, Mia Persson, Dzmitry Sledneu

We study the complexity of detecting monomials

with special properties in the sum-product

expansion of a polynomial represented by an arithmetic

circuit of size polynomial in the number of input

variables and using only multiplication and addition.

We focus on monomial properties expressed in terms

of the number of distinct ...
more >>>

Leonid Gurvits

We prove a new efficiently computable lower bound on the coefficients of stable homogeneous polynomials and present its algorthmic and combinatorial applications. Our main application is the first poly-time deterministic algorithm which approximates the partition functions associated with

boolean matrices with prescribed row and (uniformly bounded) column sums within simply ...
more >>>

Shiteng Chen, Periklis Papakonstantinou

We show that for any coprime $m,r$ there is a circuit of the form $\text{MOD}_m\circ \text{AND}_{d(n)}$ whose correlation with $\text{MOD}_r$ is at least $2^{-O\left( \frac{n}{d(n)} \right) }$. This is the first correlation lower bound for arbitrary $m,r$, whereas previously lower bounds were known for prime $m$. Our motivation is the ... more >>>

Chin Ho Lee, Emanuele Viola

We construct pseudorandom generators with improved seed length for

several classes of tests. First we consider the class of read-once

polynomials over GF(2) in $m$ variables. For error $\e$ we obtain seed

length $\tilde O (\log(m/\e)) \log(1/\e)$, where $\tilde O$ hides lower-order

terms. This is optimal up to the factor ...
more >>>