Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > SATISFIABILITY ALGORITHMS:
Reports tagged with satisfiability algorithms:
TR07-009 | 8th January 2007
Nathan Segerlind

Nearly-Exponential Size Lower Bounds for Symbolic Quantifier Elimination Algorithms and OBDD-Based Proofs of Unsatisfiability

Revisions: 1 , Comments: 1

We demonstrate a family of propositional formulas in conjunctive normal form
so that a formula of size $N$ requires size $2^{\Omega(\sqrt[7]{N/logN})}$
to refute using the tree-like OBDD refutation system of
Atserias, Kolaitis and Vardi
with respect to all variable orderings.
All known symbolic quantifier elimination algorithms for satisfiability
generate ... more >>>


TR11-131 | 29th September 2011
Rahul Santhanam, Srikanth Srinivasan

On the Limits of Sparsification

Impagliazzo, Paturi and Zane (JCSS 2001) proved a sparsification lemma for $k$-CNFs:
every k-CNF is a sub-exponential size disjunction of $k$-CNFs with a linear
number of clauses. This lemma has subsequently played a key role in the study
of the exact complexity of the satisfiability problem. A natural question is
more >>>


TR12-084 | 3rd July 2012
Rahul Santhanam

Ironic Complicity: Satisfiability Algorithms and Circuit Lower Bounds

I discuss recent progress in developing and exploiting connections between
SAT algorithms and circuit lower bounds. The centrepiece of the article is
Williams' proof that $NEXP \not \subseteq ACC^0$, which proceeds via a new
algorithm for $ACC^0$-SAT beating brute-force search. His result exploits
a formal connection from non-trivial SAT algorithms ... more >>>


TR13-108 | 9th August 2013
Rahul Santhanam, Ryan Williams

New Algorithms for QBF Satisfiability and Implications for Circuit Complexity

Revisions: 1

We revisit the complexity of the satisfiability problem for quantified Boolean formulas. We show that satisfiability
of quantified CNFs of size $\poly(n)$ on $n$ variables with $O(1)$
quantifier blocks can be solved in time $2^{n-n^{\Omega(1)}}$ by zero-error
randomized algorithms. This is the first known improvement over brute force search in ... more >>>


TR15-191 | 26th November 2015
Ruiwen Chen, Rahul Santhanam, Srikanth Srinivasan

Average-Case Lower Bounds and Satisfiability Algorithms for Small Threshold Circuits

We show average-case lower bounds for explicit Boolean functions against bounded-depth threshold circuits with a superlinear number of wires. We show that for each integer d > 1, there is \epsilon_d > 0 such that Parity has correlation at most 1/n^{\Omega(1)} with depth-d threshold circuits which have at most
n^{1+\epsilon_d} ... more >>>


TR17-173 | 6th November 2017
Igor Carboni Oliveira, Ruiwen Chen, Rahul Santhanam

An Average-Case Lower Bound against ACC^0

In a seminal work, Williams [Wil14] showed that NEXP (non-deterministic exponential time) does not have polynomial-size ACC^0 circuits. Williams' technique inherently gives a worst-case lower bound, and until now, no average-case version of his result was known.

We show that there is a language L in NEXP (resp. EXP^NP) ... more >>>




ISSN 1433-8092 | Imprint