Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with Knapsack Problem:
TR95-063 | 19th December 1995
Dima Grigoriev, Marek Karpinski, Friedhelm Meyer auf der Heide, Roman Smolensky

A Lower Bound for Randomized Algebraic Decision Trees

We extend the lower bounds on the depth of algebraic decision trees
to the case of {\em randomized} algebraic decision trees (with
two-sided error) for languages being finite unions of hyperplanes
and the intersections of halfspaces, solving a long standing open
problem. As an application, among ... more >>>

TR98-015 | 16th January 1998
Valentin E. Brimkov, Stefan S. Dantchev

Lower Bounds, "Pseudopolynomial" and Approximation Algorithms for the Knapsack Problem with Real Coefficients

In this paper we study the Boolean Knapsack problem (KP$_{{\bf R}}$)
$a^Tx=1$, $x \in \{0,1\}^n$ with real coefficients, in the framework
of the Blum-Shub-Smale real number computational model \cite{BSS}.
We obtain a new lower bound
$\Omega \left( n\log n\right) \cdot f(1/a_{\min})$ for the time
complexity ... more >>>

TR00-017 | 3rd March 2000
Valentin E. Brimkov, Stefan S. Dantchev

On the Algebraic Complexity of Integer Programming

In the framework of the Blum-Shub-Smale real number model \cite{BSS}, we study the {\em algebraic complexity} of the integer linear programming problem
(ILP$_{\bf R}$) : Given a matrix $A \in {\bf R}^{m \times n}$ and vectors
$b \in {\bf R}^m$, $d \in {\bf R}^n$, decide if there is $x ... more >>>

ISSN 1433-8092 | Imprint