We study the complexity of finding the values and optimal strategies of
MEAN PAYOFF GAMES on graphs, a family of perfect information games
introduced by Ehrenfeucht and Mycielski and considered by Gurvich,
Karzanov and Khachiyan. We describe a pseudo-polynomial time algorithm
for the solution of such games, the decision ...
more >>>
We consider combinatorial avoidance and achievement games
based on graph Ramsey theory: The players take turns in coloring
still uncolored edges of a graph G, each player being assigned a
distinct color, choosing one edge per move. In avoidance games,
completing a monochromatic subgraph isomorphic to ...
more >>>
A black-white combinatorial game is a two-person game in which the pieces are colored either black or white. The players alternate moving or taking elements of a specific color designated to them before the game begins. A player loses the game if there is no legal move available for his ... more >>>
The topic of this paper is a game on graphs called Edge Hop. The game's goal is to move a marked token from a specific starting node to a specific target node. Further, there are other tokens on some nodes which can be moved by the player under suitable conditions. ... more >>>
In many combinatorial games, one can prove that the first player wins under best play using a simple but non-constructive argument called strategy-stealing.
This work is about the complexity behind these proofs: how hard is it to actually find a winning move in a game, when you know by strategy-stealing ...
more >>>