Tomoyuki Yamakami

This paper studies distributions which

can be ``approximated'' by sampling algorithms in time polynomial in

the length of their outputs. First, it is known that if

polynomial-time samplable distributions are polynomial-time

computable, then NP collapses to P. This paper shows by a simple

...
more >>>

Ewin Tang

A recommendation system suggests products to users based on data about user preferences. It is typically modeled by a problem of completing an $m\times n$ matrix of small rank $k$. We give the first classical algorithm to produce a recommendation in $O(\text{poly}(k)\text{polylog}(m,n))$ time, which is an exponential improvement on previous ... more >>>