Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > ORACLES:
Reports tagged with Oracles:
TR95-021 | 20th April 1995
Marek Karpinski, Rutger Verbeek

On Randomized Versus Deterministic Computation

In contrast to deterministic or nondeterministic computation, it is
a fundamental open problem in randomized computation how to separate
different randomized time classes (at this point we do not even know
how to separate linear randomized time from ${\mathcal O}(n^{\log n})$
randomized time) or how to ... more >>>


TR98-021 | 7th April 1998
Shai Ben-David, Anna Gringauze.

On the Existence of Propositional Proof Systems and Oracle-relativized Propositional Logic.

Revisions: 1


We investigate sufficient conditions for the existence of
optimal propositional proof systems (PPS).
We concentrate on conditions of the form CoNF = NF.
We introduce a purely combinatorial property of complexity classes
- the notions of {\em slim} vs. {\em fat} classes.
These notions partition the ... more >>>


TR03-011 | 17th February 2003
Christian Gla├čer, Alan L. Selman, Samik Sengupta, Liyu Zhang

Disjoint NP-Pairs

We study the question of whether the class DisNP of
disjoint pairs (A, B) of NP-sets contains a complete pair.
The question relates to the question of whether optimal
proof systems exist, and we relate it to the previously
studied question of whether there exists ... more >>>


TR08-005 | 15th January 2008
Scott Aaronson, Avi Wigderson

Algebrization: A New Barrier in Complexity Theory

Any proof of P!=NP will have to overcome two barriers: relativization
and natural proofs. Yet over the last decade, we have seen circuit
lower bounds (for example, that PP does not have linear-size circuits)
that overcome both barriers simultaneously. So the question arises of
whether there ... more >>>


TR08-067 | 4th June 2008
Scott Aaronson

On Perfect Completeness for QMA

Whether the class QMA (Quantum Merlin Arthur) is equal to QMA1, or QMA with one-sided error, has been an open problem for years. This note helps to explain why the problem is difficult, by using ideas from real analysis to give a "quantum oracle" relative to which QMA and QMA1 ... more >>>




ISSN 1433-8092 | Imprint