We show that hitting sets can derandomize any BPP-algorithm.
This gives a positive answer to a fundamental open question in
probabilistic algorithms. More precisely, we present a polynomial
time deterministic algorithm which uses any given hitting set
to approximate the fractions of 1's in the ...
more >>>
We use the assumption that all sets in NP (or other levels
of the polynomial-time hierarchy) have efficient average-case
algorithms to derive collapse consequences for MA, AM, and various
subclasses of P/poly. As a further consequence we show for
C in {P(PP), PSPACE} that ...
more >>>
We consider a class, denoted APP, of real-valued functions
f:{0,1}^n\rightarrow [0,1] such that f can be approximated, to
within any epsilon>0, by a probabilistic Turing machine running in
time poly(n,1/epsilon). We argue that APP can be viewed as a
generalization of BPP, and show that APP contains a natural
complete ...
more >>>