We show that hitting sets can derandomize any BPP-algorithm.
This gives a positive answer to a fundamental open question in
probabilistic algorithms. More precisely, we present a polynomial
time deterministic algorithm which uses any given hitting set
to approximate the fractions of 1's in the ...
more >>>
This paper aims to derandomize the following problems in the smoothed analysis of Spielman and Teng. Learn Disjunctive Normal Form (DNF), invert Fourier Transforms (FT), and verify small circuits' unsatisfiability. Learning algorithms must predict a future observation from the only $m$ i.i.d. samples of a fixed but unknown joint-distribution $P(G(x),y)$ ... more >>>