We examine the power of Boolean functions with low L_1 norms in several
settings. In large part of the recent literature, the degree of a polynomial
which represents a Boolean function in some way was chosen to be the measure of the complexity of the Boolean function.
However, some functions ...
more >>>
It has been shown in previous recent work that
multiplicity automata are predictable from multiplicity
and equivalence queries. In this paper we generalize
related notions in a matrix representation
and obtain a basis for the solution
of a number of open problems in learnability theory.
Membership queries are generalized ...
more >>>
We propose an information-theoretic approach to proving lower
bounds on the size of branching programs. The argument is based on
Kraft-McMillan type inequalities for the average amount of
uncertainty about (or entropy of) a given input during the various
stages of computation. The uncertainty is measured by the average
more >>>
Let $f$ be a Boolean function. Let $N(f)=\dnf(f)+\dnf(\neg f)$ be the
sum of the minimum number of monomials in a disjunctive normal form
for $f$ and $\neg f$. Let $p(f)$ be the minimum size of a partition
of the Boolean cube into disjoint subcubes such that $f$ is constant on
more >>>
Is there a general theorem that tells us when we can hope for exponential speedups from quantum algorithms, and when we cannot? In this paper, we make two advances toward such a theorem, in the black-box model where most quantum algorithms operate.
First, we show that for any problem that ... more >>>
In this paper we prove results regarding Boolean functions with small spectral norm (the spectral norm of $f$ is $\|\hat{f}\|_1=\sum_{\alpha}|\hat{f}(\alpha)|$). Specifically, we prove the following results for functions $f:\{0,1\}^n\to \{0,1\}$ with $\|\hat{f}\|_1=A$.
1. There is a subspace $V$ of co-dimension at most $A^2$ such that $f|_V$ is constant.
2. ... more >>>
We study the query complexity of Weak Parity: the problem of computing the parity of an n-bit input string, where one only has to succeed on a 1/2+eps fraction of input strings, but must do so with high probability on those inputs where one does succeed. It is well-known that ... more >>>
For a Boolean function $f:\{0,1\}^n \to \{0,1\}$ computed by a circuit $C$ over a finite basis $\cal{B}$, the energy complexity of $C$ (denoted by $\mathbf{EC}_{{\cal B}}(C)$) is the maximum over all inputs $\{0,1\}^n$ the numbers of gates of the circuit $C$ (excluding the inputs) that output a one. Energy Complexity ... more >>>
Consider the following heuristic for building a decision tree for a function $f : \{0,1\}^n \to \{\pm 1\}$. Place the most influential variable $x_i$ of $f$ at the root, and recurse on the subfunctions $f_{x_i=0}$ and $f_{x_i=1}$ on the left and right subtrees respectively; terminate once the tree is an ... more >>>
We investigate the number of pairwise comparisons sufficient to sort $n$ elements chosen from a linearly ordered set. This number is shown to be $\log_2(n!) + o(n)$ thus improving over the previously known upper bounds of the form $\log_2(n!) + \Theta(n)$. The new bound is achieved by the proposed group ... more >>>
We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. Let $IP$ denote Inner Product on ... more >>>
Query-to-communication lifting theorems, which connect the query complexity of a Boolean function to the communication complexity of an associated `lifted' function obtained by composing the function with many copies of another function known as a gadget, have been instrumental in resolving many open questions in computational complexity. Several important complexity ... more >>>
In this paper, we initiate study of the computational power of adaptive and non-adaptive monotone decision trees – decision trees where each query is a monotone function on the input bits. In the most general setting, the monotone decision tree height (or size) can be viewed as a measure of ... more >>>
Lifting theorems are used for transferring lower bounds between Boolean function complexity measures. Given a lower bound on a complexity measure $A$ for some function $f$, we compose $f$ with a carefully chosen gadget function $g$ and get essentially the same lower bound on a complexity measure $B$ for the ... more >>>
For any constant $\alpha > 0$, we construct an explicit pseudorandom generator (PRG) that fools $n$-variate decision trees of size $m$ with error $\epsilon$ and seed length $(1 + \alpha) \cdot \log_2 m + O(\log(1/\epsilon) + \log \log n)$. For context, one can achieve seed length $(2 + o(1)) \cdot ... more >>>