Eric Allender, Jia Jiao, Meena Mahajan, V Vinay

We investigate the phenomenon of depth-reduction in commutative

and non-commutative arithmetic circuits. We prove that in the

commutative setting, uniform semi-unbounded arithmetic circuits of

logarithmic depth are as powerful as uniform arithmetic circuits of

polynomial degree; earlier proofs did not work in the ...
more >>>

Eric Allender, Vikraman Arvind, Meena Mahajan

The aim of this paper is to use formal power series techniques to

study the structure of small arithmetic complexity classes such as

GapNC^1 and GapL. More precisely, we apply the Kleene closure of

languages and the formal power series operations of inversion and

root ...
more >>>

Mrinal Kumar

We show that over the field of complex numbers, every homogeneous polynomial of degree $d$ can be approximated (in the border complexity sense) by a depth-$3$ arithmetic circuit of top fan-in at most $d+1$. This is quite surprising since there exist homogeneous polynomials $P$ on $n$ variables of degree $2$, ... more >>>

Marco Carmosino, Russell Impagliazzo, Shachar Lovett, Ivan Mihajlin

We show that proving mildly super-linear lower bounds on non-commutative arithmetic circuits implies exponential lower bounds on non-commutative circuits. That is, non-commutative circuit complexity is a threshold phenomenon: an apparently weak lower bound actually suffices to show the strongest lower bounds we could desire.

This is part of a recent ... more >>>

Nathanael Fijalkow, Guillaume Lagarde, Pierre Ohlmann, Olivier Serre

We study the complexity of representing polynomials by arithmetic circuits in both the commutative and the non-commutative settings. Our approach goes through a precise understanding of the more restricted setting where multiplication is not associative, meaning that we distinguish $(xy)z$ from $x(yz)$.

Our first and main conceptual result is a ... more >>>

Chi-Ning Chou, Mrinal Kumar, Noam Solomon

In this note, we give a short, simple and almost completely self contained proof of a classical result of Kaltofen [Kal86, Kal87, Kal89] which shows that if an n variate degree $d$ polynomial f can be computed by an arithmetic circuit of size s, then each of its factors can ... more >>>

Ankit Garg, Neeraj Kayal, Chandan Saha

We develop algorithms for writing a polynomial as sums of powers of low degree polynomials. Consider an $n$-variate degree-$d$ polynomial $f$ which can be written as

$$f = c_1Q_1^{m} + \ldots + c_s Q_s^{m},$$

where each $c_i\in \mathbb{F}^{\times}$, $Q_i$ is a homogeneous polynomial of degree $t$, and $t m = ...
more >>>

Mrinal Kumar, Ben Lee Volk

The determinantal complexity of a polynomial $P \in \mathbb{F}[x_1, \ldots, x_n]$ over a field $\mathbb{F}$ is the dimension of the smallest matrix $M$ whose entries are affine functions in $\mathbb{F}[x_1, \ldots, x_n]$ such that $P = Det(M)$. We prove that the determinantal complexity of the polynomial $\sum_{i = 1}^n x_i^n$ ... more >>>

Nutan Limaye, Srikanth Srinivasan, Sébastien Tavenas

An Algebraic Formula for a polynomial $P\in F[x_1,\ldots,x_N]$ is an algebraic expression for $P(x_1,\ldots,x_N)$ using variables, field constants, additions and multiplications. Such formulas capture an algebraic analog of the Boolean complexity class $\mathrm{NC}^1.$ Proving lower bounds against this model is thus an important problem.

It is known that, to prove ... more >>>

C Ramya, Pratik Shastri

Arithmetic circuits are a natural well-studied model for computing multivariate polynomials over a field. In this paper, we study planar arithmetic circuits. These are circuits whose underlying graph is planar. In particular, we prove an $\Omega(n\log n)$ lower bound on the size of planar arithmetic circuits computing explicit bilinear forms ... more >>>