C.H.~Bennett, P.~G\'acs, M.~Li, P.M.B.~Vit\'anyi, and W.H.~Zurek
have defined information distance between two strings $x$, $y$
as
$$
d(x,y)=\max\{ K(x|y), K(y|x) \}
$$
where $K(x|y)$ is the conditional Kolmogorov complexity.
It is easy to see that for any string $x$ and any integer $n$
there is a string $y$ ...
more >>>
The very first Kolmogorov's paper on algorithmic
information theory was entitled `Three approaches to the
definition of the quantity of information'. These three
approaches were called combinatorial, probabilistic and
algorithmic. Trying to establish formal connections
between combinatorial and algorithmic approaches, we
prove that any ...
more >>>
A string $p$ is called a program to compute $y$ given $x$
if $U(p,x)=y$, where $U$ denotes universal programming language.
Kolmogorov complexity $K(y|x)$ of $y$ relative to $x$
is defined as minimum length of
a program to compute $y$ given $x$.
Let $K(x)$ denote $K(x|\text{empty string})$
(Kolmogorov complexity of $x$) ...
more >>>
Predictive complexity is a generalization of Kolmogorov complexity
which gives a lower bound to ability of any algorithm to predict
elements of a sequence of outcomes. A variety of types of loss
functions makes it interesting to study relations between corresponding
predictive complexities.
Non-linear inequalities between predictive complexity of ... more >>>
We obtain the following full characterization of constructive dimension
in terms of algorithmic information content. For every sequence A,
cdim(A)=liminf_n (K(A[0..n-1])/n.
We present a simplified proof of Solovay-Calude-Coles theorem
stating that there is an enumerable undecidable set with the
following property: prefix
complexity of its initial segment of length n is bounded by prefix
complexity of n (up to an additive constant).
Assume that for almost all n Kolmogorov complexity
of a string x conditional to n is less than m.
We prove that in this case
there is a program of size m+O(1) that given any sufficiently large
n outputs x.
We study different notions of descriptive complexity of
computable sequences. Our main result states that if for almost all
n the Kolmogorov complexity of the n-prefix of an infinite
binary sequence x conditional to n
is less than m then there is a program of length
m^2+O(1) that for ...
more >>>
We define Kolmogorov complexity of a set of strings as the minimal
Kolmogorov complexity of its element. Consider three logical
operations on sets going back to Kolmogorov
and Kleene:
(A OR B) is the direct sum of A,B,
(A AND B) is the cartesian product of A,B,
more >>>
We invistigate what is the minimal length of
a program mapping A to B and at the same time
mapping C to D (where A,B,C,D are binary strings). We prove that
it cannot be expressed
in terms of Kolmogorv complexity of A,B,C,D, their pairs (A,B), (A,C),
..., their ...
more >>>
The problem of predicting a sequence $x_1, x_2,.... $ where each $x_i$ belongs
to a finite alphabet $A$ is considered. Each letter $x_{t+1}$ is predicted
using information on the word $x_1, x_2, ...., x_t $ only. We use the game
theoretical interpretation which can be traced to Laplace where there ...
more >>>
We consider sets of strings with high Kolmogorov complexity, mainly
in resource-bounded settings but also in the traditional
recursion-theoretic sense. We present efficient reductions, showing
that these sets are hard and complete for various complexity classes.
In particular, in addition to the usual Kolmogorov complexity measure
K, ...
more >>>
The language compression problem asks for succinct descriptions of
the strings in a language A such that the strings can be efficiently
recovered from their description when given a membership oracle for
A. We study randomized and nondeterministic decompression schemes
and investigate how close we can get to the information ...
more >>>
A recursive enumerator for a function $h$ is an algorithm $f$ which
enumerates for an input $x$ finitely many elements including $h(x)$.
$f$ is an $k(n)$-enumerator if for every input $x$ of length $n$, $h(x)$
is among the first $k(n)$ elements enumerated by $f$.
If there is a $k(n)$-enumerator for ...
more >>>
Solovay has proven that
the minimal length of a program enumerating a set A
is upper bounded by 3 times the absolute value of the
logarithm of the
probability that a random program will enumerate A.
It is unknown whether one can replace the constant
3 by a smaller constant.
more >>>
The information contained in a string $x$ about a string $y$
is defined as the difference between the Kolmogorov complexity
of $y$ and the conditional Kolmogorov complexity of $y$ given $x$,
i.e., $I(x:y)=\C(y)-\C(y|x)$. From the well-known Kolmogorov--Levin Theorem it follows that $I(x:y)$ is symmetric up to a small ...
more >>>
We investigate the question of whether one can characterize complexity
classes (such as PSPACE or NEXP) in terms of efficient
reducibility to the set of Kolmogorov-random strings R_C.
We show that this question cannot be posed without explicitly dealing
with issues raised by the choice of universal
machine in the ...
more >>>
Let a program p on input a output b. We are looking for a
shorter program p' having the same property (p'(a)=b). In
addition, we want p' to be simple conditional to p (this
means that the conditional Kolmogorov complexity K(p'|p) is
negligible). In the present paper, we prove that ...
more >>>
We introduce the study of Kolmogorov complexity with error. For a
metric d, we define C_a(x) to be the length of a shortest
program p which prints a string y such that d(x,y) \le a. We
also study a conditional version of this measure C_{a,b}(x|y)
where the task is, given ...
more >>>
How much do we have to change a string to increase its Kolmogorov complexity. We show that we can
increase the complexity of any non-random string of length n by flipping O(sqrt(n)) bits and some strings
require
Omega(sqrt(n)) bit flips. For a given m, we also give bounds for ...
more >>>
We apply recent results on extracting randomness from independent
sources to ``extract'' Kolmogorov complexity. For any $\alpha,
\epsilon > 0$, given a string $x$ with $K(x) > \alpha|x|$, we show
how to use a constant number of advice bits to efficiently
compute another string $y$, $|y|=\Omega(|x|)$, with $K(y) >
(1-\epsilon)|y|$. ...
more >>>
We show that under a reasonable hardness assumptions, the time-bounded Kolmogorov distribution is a universal samplable distribution. Under the same assumption we exactly characterize the worst-case running time of languages that are in average polynomial-time over all P-samplable distributions.
more >>>Multisource information theory in Shannon setting is well known. In this article we try to develop its algorithmic information theory counterpart and use it as the general framework for many interesting questions about Kolmogorov complexity.
more >>>We define a new discrete version of scaled dimension and we find
connections between the scaled dimension of a string and its Kolmogorov
complexity and predictability. We give a new characterization
of constructive scaled dimension by Kolmogorov complexity, and prove
a new result about scaled dimension and prediction.
We present a brief survey of results on relations between the Kolmogorov
complexity of infinite strings and several measures of information content
(dimensions) known from dimension theory, information theory or fractal
geometry.
Special emphasis is laid on bounds on the complexity of strings in
more >>>
A dimension extractor is an algorithm designed to increase the effective dimension -- i.e., the computational information density -- of an infinite sequence. A constructive dimension extractor is exhibited by showing that every sequence of positive constructive dimension is Turing equivalent to a sequence of constructive strong dimension arbitrarily ... more >>>
Antunes, Fortnow, van Melkebeek and Vinodchandran captured the
notion of non-random information by computational depth, the
difference between the polynomial-time-bounded Kolmogorov
complexity and traditional Kolmogorov complexity We show how to
find satisfying assignments for formulas that have at least one
assignment of logarithmic depth. The converse holds under a
standard ...
more >>>
A very important problem in quantum communication complexity is to show that there is, or isn?t, an exponential gap between randomized and quantum complexity for a total function. There are currently no clear candidate functions for such a separation; and there are fewer and fewer randomized lower bound techniques that ... more >>>
We continue an investigation into resource-bounded Kolmogorov complexity \cite{abkmr}, which highlights the close connections between circuit complexity and Levin's time-bounded Kolmogorov complexity measure Kt (and other measures with a similar flavor), and also exploits derandomization techniques to provide new insights regarding Kolmogorov complexity.
The Kolmogorov measures that have been ...
more >>>
We clarify the role of Kolmogorov complexity in the area of randomness extraction. We show that a computable function is an almost randomness extractor if and only if it is a Kolmogorov complexity
extractor, thus establishing a fundamental equivalence between two forms of extraction studied in the literature: Kolmogorov extraction
more >>>
It is a trivial observation that every decidable set has strings of length $n$ with Kolmogorov complexity $\log n + O(1)$ if it has any strings of length $n$ at all. Things become much more interesting when one asks whether a similar property holds when one
considers *resource-bounded* Kolmogorov complexity. ...
more >>>
In a sampling problem, we are given an input $x\in\left\{0,1\right\} ^{n}$, and asked to sample approximately from a probability
distribution $D_{x}$ over poly(n)-bit strings. In a search problem, we are given an input
$x\in\left\{ 0,1\right\} ^{n}$, and asked to find a member of a nonempty set
$A_{x}$ with high probability. ...
more >>>
In this paper we give an exposition of a theorem by Muchnik and Positselsky, showing that there is a universal prefix Turing machine U, with the property that there is no truth-table reduction from the halting problem to the set {(x,i) : there is a description d of length at ... more >>>
Let C(x) and K(x) denote plain and prefix Kolmogorov complexity, respectively, and let R_C and R_K denote the sets of strings that are ``random'' according to these measures; both R_K and R_C are undecidable. Earlier work has shown that every set in NEXP is in NP relative to both R_K ... more >>>
In \cite{shenpapier82}, it is shown that four basic functional properties are enough to characterize plain Kolmogorov complexity, hence obtaining an axiomatic characterization of this notion. In this paper, we try to extend this work, both by looking at alternative axiomatic systems for plain complexity and by considering potential axiomatic systems ... more >>>
We consider the following problem that arises in outsourced storage: a user stores her data $x$ on a remote server but wants to audit the server at some later point to make sure it actually did store $x$. The goal is to design a (randomized) verification protocol that has the ... more >>>
Can complexity classes be characterized in terms of efficient reducibility to the (undecidable) set of Kolmogorov-random strings? Although this might seem improbable, a series of papers has recently provided evidence that this may be the case. In particular, it is known that there is a class of problems $C$ defined ... more >>>
This paper is motivated by a conjecture that BPP can be characterized in terms of polynomial-time nonadaptive reductions to the set of Kolmogorov-random strings. In this paper we show that an approach laid out by [Allender et al] to settle this conjecture cannot succeed without significant alteration, but that it ... more >>>
Given a machine $U$, a $c$-short program for $x$ is a string $p$ such that $U(p)=x$ and the length of $p$ is bounded by $c$ + (the length of a shortest program for $x$). We show that for any universal machine, it is possible to compute in polynomial time on ... more >>>
A 1976 theorem of Chaitin, strengthening a 1969 theorem of Meyer,says that infinitely many lengths n have a paucity of trivial strings (only a bounded number of strings of length n having trivially low plain Kolmogorov complexities). We use the probabilistic method to give a new proof of this fact. ... more >>>
We define the lower and upper mutual dimensions $mdim(x:y)$ and $Mdim(x:y)$ between any two points $x$ and $y$ in Euclidean space. Intuitively these are the lower and upper densities of the algorithmic information shared by $x$ and $y$. We show that these quantities satisfy the main desiderata for a satisfactory ... more >>>
We consider variants of the Minimum Circuit Size Problem MCSP, where the goal is to minimize the size of oracle circuits computing a given function. When the oracle is QBF, the resulting problem MCSP$^{QBF}$ is known to be complete for PSPACE under ZPP reductions. We show that it is not ... more >>>
Mathematics was developed as a strong research instrument with fully verifiable argumentations. We call any formal theory based on syntactic rules that enables to algorithmically verify for any given text whether it is a proof or not algorithmically verifiable mathematics (AV-mathematics for short). We say that a decision problem L ... more >>>
A fundamental notion in Algorithmic Statistics is that of a stochastic object, i.e., an object having a simple plausible explanation. Informally, a probability distribution is a plausible explanation for $x$ if it looks likely that $x$ was drawn at random with respect to that distribution. In this paper, we ... more >>>
The Minimum Circuit Size Problem (MCSP) and a related problem (MKTP) that deals with time-bounded Kolmogorov complexity are prominent candidates for NP-intermediate status. We show that, under very modest cryptographic assumptions (such as the existence of one-way functions), the problem of approximating the minimum circuit size (or time-bounded Kolmogorov complexity) ... more >>>
We show that the mutual information, in the sense of Kolmogorov complexity, of any pair of strings
$x$ and $y$ is equal, up to logarithmic precision, to the length of the longest shared secret key that
two parties, one having $x$ and the complexity profile of the pair and the ...
more >>>
We investigate the computational power of an arbitrary distinguisher for (not necessarily computable) hitting set generators as well as the set of Kolmogorov-random strings. This work contributes to (at least) two lines of research. One line of research is the study of the limits of black-box reductions to some distributional ... more >>>
We introduce randomized time-bounded Kolmogorov complexity (rKt), a natural extension of Levin's notion of Kolmogorov complexity from 1984. A string w of low rKt complexity can be decompressed from a short representation via a time-bounded algorithm that outputs w with high probability.
This complexity measure gives rise to a ... more >>>
Hardness of computing the Kolmogorov complexity of a given string is closely tied to a security proof of hitting set generators, and thus understanding hardness of Kolmogorov complexity is one of the central questions in complexity theory. In this paper, we develop new proof techniques for showing hardness of computing ... more >>>
We prove the equivalence of two fundamental problems in the theory of computation:
- Existence of one-way functions: the existence of one-way functions (which in turn are equivalent to pseudorandom generators, pseudorandom functions, private-key encryption schemes, digital signatures, commitment schemes, and more).
- Mild average-case hardness of $K^{poly}$-complexity: ...
more >>>
We survey recent developments related to the Minimum Circuit Size Problem
more >>>We exactly characterize the average-case complexity of the polynomial-time hierarchy (PH) by the worst-case (meta-)complexity of GapMINKT(PH), i.e., an approximation version of the problem of determining if a given string can be compressed to a short PH-oracle efficient program. Specifically, we establish the following equivalence:
DistPH is contained in ... more >>>
A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past several years, due to its close connection to circuit complexity and to the Minimum Circuit Size Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the problem of computing the KT ... more >>>
We connect the study of pseudodeterministic algorithms to two major open problems about the structural complexity of $BPTIME$: proving hierarchy theorems and showing the existence of complete problems. Our main contributions can be summarised as follows.
1. A new pseudorandom generator and its consequences: We build on techniques developed to ... more >>>
A probabilistic representation of a string $x \in \{0,1\}^n$ is given by the code of a randomized algorithm that outputs $x$ with high probability [Oliveira, ICALP 2019]. We employ probabilistic representations to establish the first unconditional Coding Theorem in time-bounded Kolmogorov complexity. More precisely, we show that if a distribution ... more >>>
We call any consistent and sufficiently powerful formal theory that enables to algorithmically in polynomial time verify whether a text is a proof \textbf{efficiently verifiable mathematics} (ev-mathematics). We study the question whether nondeterminism is more powerful than determinism for polynomial time computations in the framework of ev-mathematics. Our main results ... more >>>
We study from the proof complexity perspective the (informal) proof search problem:
Is there an optimal way to search for propositional proofs?
We note that for any fixed proof system there exists a time-optimal proof search algorithm. Using classical proof complexity results about reflection principles we prove that a time-optimal ...
more >>>
Let $\mktp[s]$ be the set of strings $x$ such that $K^t(x) \leq s(|x|)$, where $K^t(x)$ denotes the $t$-bounded Kolmogorov complexity of the truthtable described by $x$. Our main theorem shows that for an appropriate notion of mild average-case hardness, for every $\varepsilon>0$, polynomial $t(n) \geq (1+\varepsilon)n$, and every ``nice'' class ... more >>>
Liu and Pass (FOCS'20) recently demonstrated an equivalence between the existence of one-way functions (OWFs) and mild average-case hardness of the time-bounded Kolmogorov complexity problem. In this work, we establish a similar equivalence but to a different form of time-bounded Kolmogorov Complexity---namely, Levin's notion of Kolmogorov Complexity---whose hardness is closely ... more >>>
A recent breakthrough of Liu and Pass (FOCS'20) shows that one-way functions exist if and only if the (polynomial-)time-bounded Kolmogorov complexity K^t is bounded-error hard on average to compute. In this paper, we strengthen this result and extend it to other complexity measures:
1. We show, perhaps surprisingly, that the ... more >>>
We present the first natural $\NP$-complete problem whose average-case hardness w.r.t. the uniform distribution over instances implies the existence of one-way functions (OWF). In fact, we prove that the existence of OWFs is \emph{equivalent} to mild average-case hardness of this $\NP$-complete problem. The problem, which originated in the 1960s, is ... more >>>
We show that given a quantum measurement, for an overwhelming majority of pure states, no meaningful information is produced. This is independent of the number of outcomes of the quantum measurement. Due to conservation inequalities, such random noise cannot be processed into coherent data.
more >>>We show that one-way functions exist if and only if there is some samplable distribution D such that it is hard to approximate the Kolmogorov complexity of a string sampled from D. Thus we characterize the existence of one-way functions by the average-case hardness of a natural \emph{uncomputable} problem on ... more >>>
We give a simplified proof of Hirahara's STOC'21 result showing that $DistPH \subseteq AvgP$ would imply $PH \subseteq DTIME[2^{O(n/\log n)}]$. The argument relies on a proof of the new result: Symmetry of Information for time-bounded Kolmogorov complexity under the assumption that $NP$ is easy on average, which is interesting in ... more >>>
The classical coding theorem in Kolmogorov complexity states that if an $n$-bit string $x$ is sampled with probability $\delta$ by an algorithm with prefix-free domain then K$(x) \leq \log(1/\delta) + O(1)$. In a recent work, Lu and Oliveira [LO21] established an unconditional time-bounded version of this result, by showing that ... more >>>
Understanding the relationship between the worst-case and average-case complexities of $\mathrm{NP}$ and of other subclasses of $\mathrm{PH}$ is a long-standing problem in complexity theory. Over the last few years, much progress has been achieved in this front through the investigation of meta-complexity: the complexity of problems that refer to the ... more >>>
We study the power of randomized polynomial-time non-adaptive reductions to the problem of approximating Kolmogorov complexity and its polynomial-time bounded variants.
As our first main result, we give a sharp dichotomy for randomized non-adaptive reducibility to approximating Kolmogorov complexity. We show that any computable language $L$ that has a randomized ... more >>>
Diverse applications of Kolmogorov complexity to learning [CIKK16], circuit complexity [OPS19], cryptography [LP20], average-case complexity [Hir21], and proof search [Kra22] have been discovered in recent years. Since the running time of algorithms is a key resource in these fields, it is crucial in the corresponding arguments to consider time-bounded variants ... more >>>
A central open problem in complexity theory concerns the question of whether all efficient randomized algorithms can be simulated by efficient deterministic algorithms. We consider this problem in the context of promise problems (i.e,. the $\prBPP$ v.s. $\prP$ problem) and show that for all sufficiently large constants $c$, the following ... more >>>
A long-standing open question in computational learning theory is to prove NP-hardness of learning efficient programs, the setting of which is in between proper learning and improper learning. Ko (COLT'90, SICOMP'91) explicitly raised this open question and demonstrated its difficulty by proving that there exists no relativizing proof of NP-hardness ... more >>>
Denote by $R$ the set of strings with high Kolmogorov complexity. In [E. Allender, H. Buhrman, M. Kouck\'y, D. van Melkebeek, and D. Ronneburger.
Power from random strings.
\emph{SIAM Journal on Computing}, 35:1467--1493, 2006.] the idea of using $R$ as an oracle for resource-bounded computation models was presented. This idea ...
more >>>
We provide another proof to the EL Theorem. We show the tradeoff between compressibility of codebooks and their communication capacity. A resource bounded version of the EL Theorem is proven. This is used to prove three instances of resource bounded derandomization.
Symmetry of Information (SoI) is a fundamental property of Kolmogorov complexity that relates the complexity of a pair of strings and their conditional complexities. Understanding if this property holds in the time-bounded setting is a longstanding open problem. In the nineties, Longpré and Mocas (1993) and Longpré and Watanabe (1995) ... more >>>
A one-way function is a function that is easy to compute but hard to invert *on average*. We establish the first characterization of a one-way function by *worst-case* hardness assumptions, by introducing a natural meta-computational problem whose NP-hardness (and the worst-case hardness of NP) characterizes the existence of a one-way ... more >>>
It is a long-standing open problem whether the Minimum Circuit Size Problem ($\mathrm{MCSP}$) and related meta-complexity problems are NP-complete. Even for the rare cases where the NP-hardness of meta-complexity problems are known, we only know very weak hardness of approximation.
In this work, we prove NP-hardness of approximating meta-complexity with ... more >>>
We develop the theory of cryptographic nondeterministic-secure pseudorandomness beyond the point reached by Rudich's original work (Rudich 1997), and apply it to draw new consequences in average-case complexity and proof complexity. Specifically, we show the following:
?*Demi-bit stretch*: Super-bits and demi-bits are variants of cryptographic pseudorandom generators which are ... more >>>
Carmosino, Impagliazzo, Kabanets, and Kolokolova (CCC, 2016) showed that the existence of natural properties in the sense of Razborov and Rudich (JCSS, 1997) implies PAC learning algorithms in the sense of Valiant (Comm. ACM, 1984), for boolean functions in $\P/\poly$, under the uniform distribution and with membership queries. It is ... more >>>
Whether one-way functions (OWF) exist is arguably the most important
problem in Cryptography, and beyond. While lots of candidate
constructions of one-way functions are known, and recently also
problems whose average-case hardness characterize the existence of
OWFs have been demonstrated, the question of
whether there exists some \emph{worst-case hard problem} ...
more >>>
Consider the recently introduced notion of \emph{probabilistic
time-bounded Kolmogorov Complexity}, pK^t (Goldberg et al,
CCC'22), and let MpK^tP denote the language of pairs (x,k) such that pK^t(x) \leq k.
We show the equivalence of the following:
- MpK^{poly}P is (mildly) hard-on-average w.r.t. \emph{any} samplable
distribution $\D$;
- ...
more >>>
The relationships between various meta-complexity problems are not well understood in the worst-case regime, including whether the search version is harder than the decision version, whether the hardness scales with the ``threshold", and how the hardness of different meta-complexity problems relate to one another, and to the task of function ... more >>>
We study the Range Avoidance Problem (Avoid), in which the input is an expanding circuit $C : \{0,1\}^n \to \{0,1\}^{n+1}$, and the goal is to find a $y \in \{0,1\}^{n+1}$ that is not in the image of $C$. We are interested in the randomized complexity of this problem, i.e., in ... more >>>
We study the problem of whether \emph{persistent} randomness is helpful for polynomial-time algorithms that only use \emph{logarithmic} space. In more detail, we consider the class $\searchBPLs$, of \emph{search}-problems that are solvable by a polynomial-time Probabilistic Logspace TMs with \emph{2-way} access (i.e., with multiple, as opposed to one-time, access) to a ... more >>>
While classic result in the 1980s establish that one-way functions (OWFs) imply the existence of pseudorandom generators (PRGs) which in turn imply pseudorandom functions (PRFs), the constructions (most notably the one from OWFs to PRGs) is complicated and inefficient.
Consequently, researchers have developed alternative \emph{direct} constructions of PRFs from various ... more >>>
A search-to-decision reduction is a procedure that allows one to find a solution to a problem from the mere ability to decide when a solution exists. The existence of a search-to-decision reduction for time-bounded Kolmogorov complexity, i.e., the problem of checking if a string $x$ can be generated by a ... more >>>
We develop new characterizations of Impagliazzo's worlds Algorithmica, Heuristica and Pessiland by the intractability of conditional Kolmogorov complexity $\mathrm{K}$ and conditional probabilistic time-bounded Kolmogorov complexity $\mathrm{pK}^t$.
In our first set of results, we show that $\mathrm{NP} \subseteq \mathrm{BPP}$ iff $\mathrm{pK}^t(x \mid y)$ can be computed efficiently in the worst case ... more >>>
A central open question within meta-complexity is that of NP-hardness of problems such as MCSP and MK$^t$P. Despite a large body of work giving consequences of and barriers for NP-hardness of these problems under (restricted) deterministic reductions, very little is known in the setting of randomized reductions. In this work, ... more >>>
We introduce $\mathrm{pKt}$ complexity, a new notion of time-bounded Kolmogorov complexity that can be seen as a probabilistic analogue of Levin's $\mathrm{Kt}$ complexity. Using $\mathrm{pKt}$ complexity, we upgrade two recent frameworks that characterize one-way functions ($\mathrm{OWFs}$) via symmetry of information and meta-complexity, respectively. Among other contributions, we establish the following ... more >>>
The coding theorem for Kolmogorov complexity states that any string sampled from a computable distribution has a description length close to its information content. A coding theorem for resource-bounded Kolmogorov complexity is the key to obtaining fundamental results in average-case complexity, yet whether any samplable distribution admits a coding theorem ... more >>>
We prove the first meta-complexity characterization of a quantum cryptographic primitive. We show that one-way puzzles exist if and only if there is some quantum samplable distribution of binary strings over which it is hard to approximate Kolmogorov complexity. Therefore, we characterize one-way puzzles by the average-case hardness of a ... more >>>