We study the round complexity of two-party protocols for
generating a random $n$-bit string such that the output is
guaranteed to have bounded bias (according to some measure) even
if one of the two parties deviates from the protocol (even using
unlimited computational resources). Specifically, we require that
the output's ...
more >>>
We consider the problem of random selection, where $p$ players follow a protocol to jointly select a random element of a universe of size $n$. However, some of the players may be adversarial and collude to force the output to lie in a small subset of the universe. We describe ... more >>>
In a seminal paper, Feldman and Micali (STOC '88) show an n-party Byzantine agreement protocol tolerating t < n/3 malicious parties that runs in expected constant rounds. Here, we show an expected constant-round protocol for authenticated Byzantine agreement assuming honest majority (i.e., $t < n/2$), and relying only on the ... more >>>
We show how to compress communication in distributed protocols in which parties do not have private inputs. More specifically, we present a generic method for converting any protocol in which parties do not have private inputs, into another protocol where each message is "short" while preserving the same number of ... more >>>
We prove tight network topology dependent bounds on the round complexity of computing well studied $k$-party functions such as set disjointness and element distinctness. Unlike the usual case in the CONGEST model in distributed computing, we fix the function and then vary the underlying network topology. This complements the recent ... more >>>
We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas. This new game is both a generalization of the monotone Karchmer-Wigderson game and an analog of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between the existing monotone and general games.
Using this game, we ... more >>>