Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > ISOLATION LEMMA:
Reports tagged with Isolation Lemma:
TR06-062 | 24th April 2006
Subhas Kumar Ghosh

Unique k-SAT is as Hard as k-SAT

Revisions: 1 , Comments: 3

In this work we show that Unique k-SAT is as Hard as k-SAT for every $k \in {\mathds N}$. This settles a conjecture by Calabro, Impagliazzo, Kabanets and Paturi \cite{CIKP03}. To provide an affirmative answer to this conjecture, we develop a randomness optimal construction of Isolation Lemma(see Valiant and Vazirani ... more >>>


TR08-049 | 10th April 2008
Vikraman Arvind, Partha Mukhopadhyay

Derandomizing the Isolation Lemma and Lower Bounds for Noncommutative Circuit Size

Revisions: 3

We give a randomized polynomial-time identity test for
noncommutative circuits of polynomial degree based on the isolation
lemma. Using this result, we show that derandomizing the isolation
lemma implies noncommutative circuit size lower bounds. More
precisely, we consider two restricted versions of the isolation
lemma and show that derandomizing each ... more >>>


TR11-151 | 9th November 2011
Valentine Kabanets, Osamu Watanabe

Is the Valiant-Vazirani Isolation Lemma Improvable?

Revisions: 2

The Valiant-Vazirani Isolation Lemma [TCS, vol. 47, pp. 85--93, 1986] provides an efficient procedure for isolating a satisfying assignment of a given satisfiable circuit: given a Boolean circuit $C$ on $n$ input variables, the procedure outputs a new circuit $C'$ on the same $n$ input variables with the property that ... more >>>


TR14-161 | 27th November 2014
Rahul Arora, Ashu Gupta, Rohit Gurjar, Raghunath Tewari

Derandomizing Isolation Lemma for $K_{3,3}$-free and $K_5$-free Bipartite Graphs

Revisions: 2

The perfect matching problem has a randomized $NC$ algorithm, using the celebrated Isolation Lemma of Mulmuley, Vazirani and Vazirani. The Isolation Lemma states that giving a random weight assignment to the edges of a graph, ensures that it has a unique minimum weight perfect matching, with a good probability. We ... more >>>


TR15-080 | 7th May 2015
Noam Ta-Shma

A simple proof of the Isolation Lemma

We give a new simple proof for the Isolation Lemma, with slightly better parameters, that also gives non-trivial results even when the weight domain $m$ is smaller than the number of variables $n$.

more >>>

TR15-177 | 9th November 2015
Stephen A. Fenner, Rohit Gurjar, Thomas Thierauf

Bipartite Perfect Matching is in quasi-NC

Revisions: 2

We show that the bipartite perfect matching problem is in quasi-NC$^2$. That is, it has uniform circuits of quasi-polynomial size and $O(\log^2 n)$ depth. Previously, only an exponential upper bound was known on the size of such circuits with poly-logarithmic depth.

We obtain our result by an almost complete ... more >>>


TR15-208 | 26th December 2015
Shafi Goldwasser, Ofer Grossman

Perfect Bipartite Matching in Pseudo-Deterministic $RNC$

Revisions: 2

In this paper we present a pseudo-deterministic $RNC$ algorithm for finding perfect matchings in bipartite graphs. Specifically, our algorithm is a randomized parallel algorithm which uses $poly(n)$ processors, $poly({\log n})$ depth, $poly(\log n)$ random bits, and outputs for each bipartite input graph a unique perfect matching with high probability. That ... more >>>


TR16-155 | 10th October 2016
Vaibhav Krishan, Nutan Limaye

Isolation Lemma for Directed Reachability and NL vs. L

In this work we study the problem of efficiently isolating witnesses for the complexity classes NL and LogCFL, which are two well-studied complexity classes contained in P. We prove that if there is a L/poly randomized procedure with success probability at least 2/3 for isolating an s-t path in a ... more >>>


TR16-182 | 14th November 2016
Rohit Gurjar, Thomas Thierauf

Linear Matroid Intersection is in quasi-NC

Given two matroids on the same ground set, the matroid intersection problem asks to find a common independent set of maximum size. We show that the linear matroid intersection problem is in quasi-NC$^2$. That is, it has uniform circuits of quasi-polynomial size $n^{O(\log n)}$, and $O(\log^2 n)$ depth. This generalizes ... more >>>


TR17-052 | 19th March 2017
Dieter van Melkebeek, Gautam Prakriya

Derandomizing Isolation in Space-Bounded Settings

We study the possibility of deterministic and randomness-efficient isolation in space-bounded models of computation: Can one efficiently reduce instances of computational problems to equivalent instances that have at most one solution? We present results for the NL-complete problem of reachability on digraphs, and for the LogCFL-complete problem of certifying acceptance ... more >>>


TR17-059 | 6th April 2017
Ola Svensson, Jakub Tarnawski

The Matching Problem in General Graphs is in Quasi-NC

Revisions: 1

We show that the perfect matching problem in general graphs is in Quasi-NC. That is, we give a deterministic parallel algorithm which runs in $O(\log^3 n)$ time on $n^{O(\log^2 n)}$ processors. The result is obtained by a derandomization of the Isolation Lemma for perfect matchings, which was introduced in the ... more >>>


TR17-127 | 12th August 2017
Rohit Gurjar, Thomas Thierauf, Nisheeth Vishnoi

Isolating a Vertex via Lattices: Polytopes with Totally Unimodular Faces

Revisions: 1

We deterministically construct quasi-polynomial weights in quasi-polynomial time, such that in a given polytope with totally unimodular constraints, one vertex is isolated, i.e., there is a unique minimum weight vertex.
More precisely,
the property that we need is that every face of the polytope lies in an affine space defined ... more >>>


TR18-106 | 30th May 2018
Chetan Gupta, Vimalraj Sharma, Raghunath Tewari

Reachability in $O(\log n)$ Genus Graphs is in Unambiguous

Revisions: 1

Given the polygonal schema embedding of an $O(log n)$ genus graph $G$ and two vertices
$s$ and $t$ in $G$, we show that deciding if there is a path from $s$ to $t$ in $G$ is in unambiguous
logarithmic space.

more >>>

TR20-025 | 20th February 2020
Chetan Gupta, Vimal Raj Sharma, Raghunath Tewari

Efficient Isolation of Perfect Matching in O(log n) Genus Bipartite Graphs

We show that given an embedding of an O(log n) genus bipartite graph, one can construct an edge weight function in logarithmic space, with respect to which the minimum weight perfect matching in the graph is unique, if one exists.

As a consequence, we obtain that deciding whether the ... more >>>


TR20-098 | 4th July 2020
Manindra Agrawal, Rohit Gurjar, Thomas Thierauf

Impossibility of Derandomizing the Isolation Lemma for all Families

The Isolation Lemma states that when random weights are assigned to the elements of a finite set $E$, then in any given family of subsets of $E$, exactly one set has the minimum weight, with high probability. In this note, we present two proofs for the fact that it is ... more >>>




ISSN 1433-8092 | Imprint