Luby and Rackoff showed a method for constructing a pseudo-random
permutation from a pseudo-random function. The method is based on
composing four (or three for weakened security) so called Feistel
permutations each of which requires the evaluation of a pseudo-random
function. We reduce somewhat the complexity ...
more >>>
Most cryptographic primitives require randomness (for example, to generate their secret keys). Usually, one assumes that perfect randomness is available, but, conceivably, such primitives might be built under weaker, more realistic assumptions. This is known to be true for many authentication applications, when entropy alone is typically sufficient. In contrast, ... more >>>
In this note, we show how to transform a large class of erroneous cryptographic schemes into perfectly correct ones. The transformation works for schemes that are correct on every input with probability noticeably larger than half, and are secure under parallel repetition. We assume the existence of one-way functions ...
more >>>