Scott Aaronson

Can NP-complete problems be solved efficiently in the physical universe?

I survey proposals including soap bubbles, protein folding, quantum

computing, quantum advice, quantum adiabatic algorithms,

quantum-mechanical nonlinearities, hidden variables, relativistic time

dilation, analog computing, Malament-Hogarth spacetimes, quantum

gravity, closed timelike curves, and "anthropic computing." The ...
more >>>

Dmitry Gavinsky, Julia Kempe, Ronald de Wolf

We give an exponential separation between one-way quantum and classical communication complexity for a Boolean function. Earlier such a separation was known only for a relation. A very similar result was obtained earlier but independently by Kerenidis and Raz [KR06]. Our version of the result gives an example in the ... more >>>

Iordanis Kerenidis, Ran Raz

We give a tight lower bound of Omega(\sqrt{n}) for the randomized one-way communication complexity of the Boolean Hidden Matching Problem [BJK04]. Since there is a quantum one-way communication complexity protocol of O(log n) qubits for this problem, we obtain an exponential separation of quantum and classical one-way communication complexity for ... more >>>

Bill Fefferman, Ronen Shaltiel, Chris Umans, Emanuele Viola

The {\em hybrid argument}

allows one to relate

the {\em distinguishability} of a distribution (from

uniform) to the {\em

predictability} of individual bits given a prefix. The

argument incurs a loss of a factor $k$ equal to the

bit-length of the

distributions: $\epsilon$-distinguishability implies only

$\epsilon/k$-predictability. ...
more >>>

Mark Zhandry

In the presence of a quantum adversary, there are two possible definitions of security for a pseudorandom function. The first, which we call standard-security, allows the adversary to be quantum, but requires queries to the function to be classical. The second, quantum-security, allows the adversary to query the function on ... more >>>

Martin Schwarz, Maarten Van den Nest

We show that several quantum circuit families can be simulated efficiently classically if it is promised that their output distribution is approximately sparse i.e. the distribution is close to one where only a polynomially small, a priori unknown subset of the measurement probabilities are nonzero. Classical simulations are thereby obtained ... more >>>

Martin Schwarz

We prove a deterministic exponential time upper bound for Quantum Merlin-Arthur games with k unentangled provers. This is the first non-trivial upper bound of QMA(k) better than NEXP and can be considered an exponential improvement, unless EXP=NEXP. The key ideas of our proof are to use perturbation theory to reduce ... more >>>

Zachary Remscrim

The two-way quantum/classical finite automaton (2QCFA), defined by Ambainis and Watrous, is a model of quantum computation whose quantum part is extremely limited; however, as they showed, 2QCFA are surprisingly powerful: a 2QCFA, with a single qubit, can recognize, with one-sided bounded-error, the language $L_{eq}=\{a^m b^m |m \in \mathbb{N}\}$ in ... more >>>

Zachary Remscrim

The two-way finite automaton with quantum and classical states (2QCFA), defined by Ambainis and Watrous, is a model of quantum computation whose quantum part is extremely limited; however, as they showed, 2QCFA are surprisingly powerful: a 2QCFA with only a single-qubit can recognize the language $L_{pal}=\{w \in \{a,b\}^*:w \text{ is ... more >>>