In this paper, we study two questions related to
the problem of testing whether a function is close to a homomorphism.
For two finite groups $G,H$ (not necessarily Abelian),
an arbitrary map $f:G \rightarrow H$, and a parameter $0 < \epsilon <1$,
say that $f$ is $\epsilon$-close to a homomorphism ...
more >>>
This paper studies whether quantum proofs are more powerful than
classical proofs, or in complexity terms, whether QMA=QCMA. We prove
two results about this question. First, we give a "quantum oracle
separation" between QMA and QCMA. More concretely, we show that any
quantum algorithm needs order sqrt(2^n/(m+1)) queries to find ...
more >>>