Predrag Tosic

We study the computational complexity of counting the fixed point configurations in certain discrete dynamical systems. We prove that both exact and approximate counting in Sequential and Synchronous Dynamical Systems (SDSs and SyDS, respectrively) is computationally intractable, even when each node is required to update according to a symmetric Boolean ... more >>>

Predrag Tosic

We study counting various types of con gurations in certain classes of graph

automata viewed as discrete dynamical systems. The graph automata models

of our interest are Sequential and Synchronous Dynamical Systems (SDSs and

SyDSs, respectively). These models have been proposed as a mathematical foun-

dation for a theory of ...
more >>>

Predrag Tosic

We study the computational complexity of counting the fixed point configurations (FPs), the predecessor configurations and the ancestor configurations in certain classes of graph or network automata viewed as discrete dynamical systems. Early results of this investigation are presented in two recent ECCC reports [39, 40]. In particular, it is ... more >>>

Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran

In this paper, we establish a novel connection between total variation (TV) distance estimation and probabilistic inference. In particular, we present an efficient, structure-preserving reduction from relative approximation of TV distance to probabilistic inference over directed graphical models. This reduction leads to a fully polynomial randomized approximation scheme (FPRAS) for ... more >>>