Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > ALGEBRA:
Reports tagged with algebra:
TR02-032 | 17th April 2002
Andrei Bulatov

Tractable Constraint Satisfaction Problems on a 3-element set

The Constraint Satisfaction Problem (CSP) provides a common framework for many combinatorial problems. The general CSP is known to be NP-complete; however, certain restrictions on a possible form of constraints may affect the complexity, and lead to tractable problem classes. There is, therefore, a fundamental research direction, aiming to separate ... more >>>


TR05-142 | 1st December 2005
Vadim Lyubashevsky, Daniele Micciancio

Generalized Compact Knapsacks are Collision Resistant

The generalized knapsack problem is the following: given $m$ random
elements $a_1,\ldots,a_m\in R$ for some ring $R$, and a target $t\in
R$, find elements $z_1,\ldots,z_m\in D$ such that $\sum{a_iz_i}=t$
where $D$ is some given subset of $R$. In (Micciancio, FOCS 2002),
it was proved that for appropriate choices of $R$ ... more >>>


TR06-117 | 31st August 2006
Arkadev Chattopadhyay, Michal Koucky, Andreas Krebs, Mario Szegedy, Pascal Tesson, Denis Thérien

Languages with Bounded Multiparty Communication Complexity

We study languages with bounded communication complexity in the multiparty "input on the forehead" model with worst-case partition. In the two party case, it is known that such languages are exactly those that are recognized by programs over commutative monoids. This can be used to show that these languages can ... more >>>


TR10-160 | 28th October 2010
Zeev Dvir, Dan Gutfreund, Guy Rothblum, Salil Vadhan

On Approximating the Entropy of Polynomial Mappings

We investigate the complexity of the following computational problem:

Polynomial Entropy Approximation (PEA):
Given a low-degree polynomial mapping
$p : F^n\rightarrow F^m$, where $F$ is a finite field, approximate the output entropy
$H(p(U_n))$, where $U_n$ is the uniform distribution on $F^n$ and $H$ may be any of several entropy measures.

... more >>>

TR19-035 | 5th March 2019
Alexey Milovanov

PIT for depth-4 circuits and Sylvester-Gallai theorem for polynomials


This text is a development of a preprint of Ankit Gupta.

We present an approach for devising a deterministic polynomial time whitekbox identity testing (PIT) algorithm for depth-$4$ circuits with bounded top fanin.
This approach is similar to Kayal-Saraf approach for depth-$3$ circuits. Kayal and Saraf based their ... more >>>




ISSN 1433-8092 | Imprint