We analyze the addition of a simple local improvement step to various known
randomized approximation algorithms.
Let $\alpha \simeq 0.87856$ denote the best approximation ratio currently
known for the Max Cut problem on general graphs~\cite{GW95}.
We consider a semidefinite relaxation of the Max Cut problem,
round it using the ...
more >>>
We show that in the bounded degree model for graph property testing,
adaptivity is essential. An algorithm is *non-adaptive* if it makes all queries to the input before receiving any answers. We call a property *non-trivial* if it does not depend only on the degree distribution of the nodes. We ...
more >>>
Let $G$ be an undirected, bounded degree graph with $n$ vertices. Fix a finite graph $H$, and suppose one must remove $\varepsilon n$ edges from $G$ to make it $H$-minor free (for some small constant $\varepsilon > 0$).
We give an $n^{1/2+o(1)}$-time randomized procedure that, with high probability, finds an ...
more >>>
Let $G$ be an undirected, bounded degree graph
with $n$ vertices. Fix a finite graph $H$, and suppose one must remove $\varepsilon n$ edges from $G$ to make it $H$-minor free (for some small constant $\varepsilon > 0$). We give an $n^{1/2+o(1)}$-time randomized procedure that, with high probability, finds an ...
more >>>
Consider property testing on bounded degree graphs and let $\varepsilon > 0$ denote the proximity parameter. A remarkable theorem of Newman-Sohler (SICOMP 2013) asserts that all properties of planar graphs (more generally hyperfinite) are testable with query complexity only depending on $\varepsilon$. Recent advances in testing minor-freeness have proven that ... more >>>
Considering the bounded-degree graph model, we show that if the degree bound is two,
then every graph property can be tested within query complexity that only depends on the proximity parameter.
Specifically, the query complexity is ${\rm poly}(1/\epsilon)$, where $\epsilon$ denotes the proximity parameter.
The key observation is that a ...
more >>>
We consider the notion of a local-characterization of an infinite family of unlabeled bounded-degree graphs.
Such a local-characterization is defined in terms of a finite set of (marked) graphs yielding a generalized notion of subgraph-freeness, which extends the standard notions of induced and non-induced subgraph freeness.
We survey the work ... more >>>