While the 3-dimensional analogue of the Sperner problem in the plane was known to be PPAD-complete, the complexity of the 2D-SPERNER itself is not known to be PPAD-complete or not. In this paper, we settle this open problem proposed by Papadimitriou~\cite{PAP90} fifteen years ago. This also allows us to derive ... more >>>
Rounding has proven to be a fundamental tool in theoretical computer science. By observing that rounding and partitioning of $\mathbb{R}^d$ are equivalent, we introduce the following natural partition problem which we call the secluded hypercube partition problem: Given $k\in\mathbb{N}$ (ideally small) and $\epsilon>0$ (ideally large), is there a partition of ... more >>>
We initiate the study of the *randomness complexity* of differential privacy, i.e., how many random bits an algorithm needs in order to generate accurate differentially private releases. As a test case, we focus on the task of releasing the results of $d$ counting queries, or equivalently all one-way marginals on ... more >>>