Recently Ajtai showed that
to approximate the shortest lattice vector in the $l_2$-norm within a
factor $(1+2^{-\mbox{\tiny dim}^k})$, for a sufficiently large
constant $k$, is NP-hard under randomized reductions.
We improve this result to show that
to approximate a shortest lattice vector within a
factor $(1+ \mbox{dim}^{-\epsilon})$, for any
$\epsilon>0$, ...
more >>>
Recently, Ajtai discovered a fascinating connection
between the worst-case complexity and the average-case
complexity of some well-known lattice problems.
Later, Ajtai and Dwork proposed a cryptosystem inspired
by Ajtai's work, provably secure if a particular lattice
problem is difficult. We show that there is a converse
to the ...
more >>>
We show that computing the approximate length of the shortest vector
in a lattice within a factor c is NP-hard for randomized reductions
for any constant c<sqrt(2). We also give a deterministic reduction
based on a number theoretic conjecture.
We give a method for approximating any $n$-dimensional
lattice with a lattice $\Lambda$ whose factor group
$\mathbb{Z}^n / \Lambda$ has $n-1$ cycles of equal length
with arbitrary precision. We also show that a direct
consequence of this is that the Shortest Vector Problem and the Closest
Vector Problem cannot ...
more >>>
We present new faster algorithms for the exact solution of the shortest vector problem in arbitrary lattices. Our main result shows that the shortest vector in any $n$-dimensional lattice can be found in time $2^{3.199 n}$ and space $2^{1.325 n}$.
This improves the best previously known algorithm by Ajtai, Kumar ...
more >>>
We prove that the Shortest Vector Problem (SVP) on point lattices is NP-hard to approximate for any constant factor under polynomial time reverse unfaithful random reductions. These are probabilistic reductions with one-sided error that produce false negatives with small probability, but are guaranteed not to produce false positives regardless of ... more >>>
The $k$-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over $\mathbb F_2$, which can be stated as follows: given a generator matrix $\mathbf A$ and an integer $k$, determine whether the code generated by $\mathbf A$ has distance at most $k$. Here, $k$ ... more >>>
The k-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over $\mathbb{F}_2$, which can be stated as follows: given a generator matrix A and an integer k, determine whether the code generated by A has distance at most k, or in other words, whether ... more >>>
We prove that the Minimum Distance Problem (MDP) on linear codes over any fixed finite field and parameterized by the input distance bound is W[1]-hard to approximate within any constant factor. We also prove analogous results for the parameterized Shortest Vector Problem (SVP) on integer lattices. Specifically, we prove that ... more >>>
Computational problems on point lattices play a central role in many areas of computer science including integer programming, coding theory, cryptanalysis, and especially the design of secure cryptosystems. In this survey, we present known results and open questions related to the complexity of the most important of these problems, the ... more >>>
We establish strong inapproximability for finding the sparsest nonzero vector in a real subspace (where sparsity refers to the number of nonzero entries). Formally we show that it is NP-Hard (under randomized reductions) to approximate the sparsest vector in a subspace within any constant factor. By simple tensoring the inapproximability ... more >>>