We provide new non-approximability results for the restrictions
of the min-VC problem to bounded-degree, sparse and dense graphs.
We show that for a sufficiently large B, the recent 16/15 lower
bound proved by Bellare et al. extends with negligible
loss to graphs with bounded ...
more >>>
Let G=(V,E) be an unweighted undirected graph on n vertices. A simple
argument shows that computing all distances in G with an additive
one-sided error of at most 1 is as hard as Boolean matrix
multiplication. Building on recent work of Aingworth, Chekuri and
Motwani, we describe an \tilde{O}(min{n^{3/2}m^{1/2},n^{7/3}) time
more >>>
Given a weighted graph $G = (V,E,w)$, with weight function $w: E \rightarrow \mathbb{Q^+}$, a \textit{matching} $M$ is a set of pairwise non-adjacent edges. In the optimization setting, one seeks to find a matching of \textit{maximum} weight. In the \textit{multi-criteria} (or \textit{multi-budgeted}) setting, we are also given $\ell$ length functions ... more >>>
Assume that the edges of the complete bipartite graph $K_{n,n}$ are labeled with elements of $\mathbb{F}_2^d$, such that the sum over
any simple cycle is nonzero. What is the smallest possible value of $d$? This problem was raised by Gopalan et al. [SODA 2017] as it characterizes the alphabet size ...
more >>>
In this paper, we present a new construction of simplicial complexes of subpolynomial degree with arbitrarily good local spectral expansion. Previously, the only known high-dimensional expanders (HDXs) with arbitrarily good expansion and less than polynomial degree were based on one of two constructions, namely Ramanujan complexes and coset complexes. ... more >>>
We present the first explicit construction of two-sided lossless expanders in the unbalanced setting (bipartite graphs that have many more nodes on the left than on the right). Prior to our work, all known explicit constructions in the unbalanced setting achieved only one-sided lossless expansion.
Specifically, we show ... more >>>