Let G=(V,E) be an unweighted undirected graph on n vertices. A simple
argument shows that computing all distances in G with an additive
one-sided error of at most 1 is as hard as Boolean matrix
multiplication. Building on recent work of Aingworth, Chekuri and
Motwani, we describe an \tilde{O}(min{n^{3/2}m^{1/2},n^{7/3}) time
more >>>
We present two new algorithms for solving the {\em All
Pairs Shortest Paths\/} (APSP) problem for weighted directed
graphs. Both algorithms use fast matrix multiplication algorithms.
The first algorithm
solves the APSP problem for weighted directed graphs in which the edge
weights are integers of small absolute value in ...
more >>>