Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with Gilbert--Varshamov bound:
TR97-046 | 3rd October 1997
Alexander Barg

Complexity Issues in Coding Theory

This is a research-expository paper. It deals with
complexity issues in the theory of linear block codes. The main
emphasis is on the theoretical performance limits of the
best known codes. Therefore, the main subject of the paper are
families of asymptotically good codes, i.e., codes whose rate and
relative ... more >>>

TR19-080 | 1st June 2019
Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, Shashwat Silas

On List Recovery of High-Rate Tensor Codes

We continue the study of list recovery properties of high-rate tensor codes, initiated by Hemenway, Ron-Zewi, and Wootters (FOCS'17). In that work it was shown that the tensor product of an efficient (poly-time) high-rate globally list recoverable code is {\em approximately} locally list recoverable, as well as globally list recoverable ... more >>>

TR24-091 | 14th May 2024
Dean Doron, Jonathan Mosheiff, Mary Wootters

When Do Low-Rate Concatenated Codes Approach The Gilbert--Varshamov Bound?

The Gilbert--Varshamov (GV) bound is a classical existential result in coding theory. It implies that a random linear binary code of rate $\varepsilon^2$ has relative distance at least $\frac{1}{2} - O(\varepsilon)$ with high probability. However, it is a major challenge to construct explicit codes with similar parameters.

One hope to ... more >>>

ISSN 1433-8092 | Imprint