We give a random class of n dimensional lattices so that, if
there is a probabilistic polynomial time algorithm which finds a short
vector in a random lattice with a probability of at least 1/2
then there is also a probabilistic polynomial time algorithm which
solves the following three ...
more >>>
We present a probabilistic public key cryptosystem which is
secure unless the following worst-case lattice problem can be solved in
polynomial time:
"Find the shortest nonzero vector in an n dimensional lattice
L where the shortest vector v is unique in the sense that any other
vector whose ...
more >>>
We show that the shortest vector problem in lattices
with L_2 norm is NP-hard for randomized reductions. Moreover we
also show that there is a positive absolute constant c, so that to
find a vector which is longer than the shortest non-zero vector by no
more than a factor of ...
more >>>
Lattices have received considerable attention as a potential source of computational hardness to be used in cryptography, after a breakthrough result of Ajtai (STOC 1996) connecting the average-case and worst-case complexity of various lattice problems. The purpose of this paper is twofold. On the expository side, we present a rigorous ... more >>>