Jan Johannsen

Using a notion of real communication complexity recently

introduced by J. Krajicek, we prove a lower bound on the depth of

monotone real circuits and the size of monotone real formulas for

st-connectivity. This implies a super-polynomial speed-up of dag-like

over tree-like Cutting Planes proofs.

Pavel Hrubes, Pavel Pudlak

We show that if a Boolean function $f:\{0,1\}^n\to \{0,1\}$ can be computed by a monotone real circuit of size $s$ using $k$-ary monotone gates then $f$ can be computed by a monotone real circuit of size $O(sn^{k-2})$ which uses unary or binary monotone gates only. This partially solves an open ... more >>>

Stasys Jukna, Andrzej Lingas

We consider Boolean circuits over $\{\lor,\land,\neg\}$ with negations applied only to input variables. To measure the ``amount of negation'' in such circuits, we introduce the concept of their ``negation width.'' In particular, a circuit computing a monotone Boolean function $f(x_1,\ldots,x_n)$ has negation width $w$ if no nonzero term produced (purely ... more >>>

Stasys Jukna

The problem of constructing hazard-free Boolean circuits (those avoiding electronic glitches) dates back to the 1940s and is an important problem in circuit design. Recently, Ikenmeyer et al. [J. ACM, 66:4 (2019), Article 25] have shown that the hazard-free circuit complexity of any Boolean function $f(x)$ is lower-bounded by the ... more >>>

Samir Datta, Chetan Gupta

In this paper, we study the circuit value problem for monotone Boolean circuits (that is, circuits without negation gates) when the circuits are embedded on a surface of bounded genus, and all inputs to the circuits lie on at most constantly many faces. We show that this problem can be ... more >>>