Under the auspices of the Computational Complexity Foundation (CCF)

REPORTS > KEYWORD > LOW-DEGREE TESTING:
Reports tagged with low-degree testing:
TR97-010 | 2nd April 1997
Marcos Kiwi

#### Testing and Weight Distributions of Dual Codes

We study the testing problem, that is, the problem of determining (maybe
probabilistically) if a function to which we have oracle access
satisfies a given property.

We propose a framework in which to formulate and carry out the analyzes
of several known tests. This framework establishes a connection between
more >>>

TR11-059 | 15th April 2011

#### Optimal testing of multivariate polynomials over small prime fields

We consider the problem of testing if a given function $f : \F_q^n \rightarrow \F_q$ is close to a $n$-variate degree $d$ polynomial over the finite field $\F_q$ of $q$ elements. The natural, low-query, test for this property would be to pick the smallest dimension $t = t_{q,d}\approx d/q$ such ... more >>>

TR12-045 | 22nd April 2012
Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer

#### On the Concrete-Efficiency Threshold of Probabilistically-Checkable Proofs

Revisions: 3

Probabilistically-Checkable Proofs (PCPs) form the algorithmic core that enables succinct verification of long proofs/computations in many cryptographic constructions, such as succinct arguments and proof-carrying data.

Despite the wonderful asymptotic savings they bring, PCPs are also the infamous computational bottleneck preventing these cryptographic constructions from being used in practice. This reflects ... more >>>

TR14-004 | 30th November 2013

#### On $r$-Simple $k$-Path

An $r$-simple $k$-path is a {path} in the graph of length $k$ that
passes through each vertex at most $r$ times. The \simpath{r}{k}
problem, given a graph $G$ as input, asks whether there exists an
$r$-simple $k$-path in $G$. We first show that this problem is
NP-Complete. We then show ... more >>>

TR15-043 | 2nd April 2015

#### Robust testing of lifted codes with applications to low-degree testing

A local tester for a code probabilistically looks at a given word at a small set of coordinates and based on this local view accepts codewords with probability one while rejecting words far from the code with constant probabilility. A local tester for a code is said to be robust'' ... more >>>

TR17-110 | 22nd June 2017
Alessandro Chiesa, Peter Manohar, Igor Shinkar

#### On Axis-Parallel Tests for Tensor Product Codes

Many low-degree tests examine the input function via its restrictions to random hyperplanes of a certain dimension. Examples include the line-vs-line (Arora, Sudan 2003), plane-vs-plane (Raz, Safra 1997), and cube-vs-cube (Bhangale, Dinur, Livni 2017) tests.

In this paper we study a test introduced by Ben-Sasson and Sudan in 2006 that ... more >>>

TR19-070 | 14th May 2019
Alessandro Chiesa, Peter Manohar, Igor Shinkar

#### On Local Testability in the Non-Signaling Setting

Revisions: 1

Non-signaling strategies are a generalization of quantum strategies that have been studied in physics for decades, and have recently found applications in theoretical computer science. These applications motivate the study of local-to-global phenomena for non-signaling functions.

We present general results about the local testability of linear codes in the non-signaling ... more >>>

ISSN 1433-8092 | Imprint