We survey recent results on the existence of polynomial time
approximation schemes for some dense instances of NP-hard
optimization problems. We indicate further some inherent limits
for existence of such schemes for some other dense instances of
the optimization problems.
We analyze the addition of a simple local improvement step to various known
randomized approximation algorithms.
Let $\alpha \simeq 0.87856$ denote the best approximation ratio currently
known for the Max Cut problem on general graphs~\cite{GW95}.
We consider a semidefinite relaxation of the Max Cut problem,
round it using the ...
more >>>
We design a $0.795$ approximation algorithm for the Max-Bisection problem
restricted to regular graphs. In the case of three regular graphs our
results imply an approximation ratio of $0.834$.
The max-bisection problem is to find a partition of the vertices of a
graph into two equal size subsets that maximizes the number of edges with
endpoints in both subsets.
We obtain new improved approximation ratios for the max-bisection problem on
the low degree $k$-regular graphs for ...
more >>>
The Max-Bisection and Min-Bisection are the problems of finding
partitions of the vertices of a given graph into two equal size subsets so as
to maximize or minimize, respectively, the number of edges with exactly one
endpoint in each subset.
In this paper we design the first ...
more >>>
The general asymmetric (and metric) TSP is known to be approximable
only to within an O(log n) factor, and is also known to be
approximable within a constant factor as soon as the metric is
bounded. In this paper we study the asymmetric and symmetric TSP
problems with bounded metrics ...
more >>>
We consider bounded occurrence (degree) instances of a minimum
constraint satisfaction problem MIN-LIN2 and a MIN-BISECTION problem for
graphs. MIN-LIN2 is an optimization problem for a given system of linear
equations mod 2 to construct a solution that satisfies the minimum number
of them. E3-OCC-MIN-E3-LIN2 ...
more >>>
It is known that large fragments of the class of dense
Minimum Constraint Satisfaction (MIN-CSP) problems do not have
polynomial time approximation schemes (PTASs) contrary to their
Maximum Constraint Satisfaction analogs. In this paper we prove,
somewhat surprisingly, that the minimum satisfaction of dense
instances of kSAT-formulas, ...
more >>>
We present some of the recent results on computational complexity
of approximating bounded degree combinatorial optimization problems. In
particular, we present the best up to now known explicit nonapproximability
bounds on the very small degree optimization problems which are of
particular importance on the intermediate stages ...
more >>>
Analysis of genomes evolving by inversions leads to a general
combinatorial problem of {\em Sorting by Reversals}, MIN-SBR, the problem of
sorting a permutation by a minimum number of reversals.
This combinatorial problem has a long history, and a number of other
motivations. It was studied in a great ...
more >>>
We design a polynomial time approximation scheme (PTAS) for
the problem of Metric MIN-BISECTION of dividing a given finite metric
space into two halves so as to minimize the sum of distances across
that partition. The method of solution depends on a new metric placement
partitioning ...
more >>>
We prove that the problems of minimum bisection on k-uniform
hypergraphs are almost exactly as hard to approximate,
up to the factor k/3, as the problem of minimum bisection
on graphs. On a positive side, our argument gives also the
first approximation ...
more >>>