We develop an analytic framework based on
linear approximation and point out how a number of complexity
related questions --
on circuit and communication
complexity lower bounds, as well as
pseudorandomness, learnability, and general combinatorics
of Boolean functions --
fit neatly into this framework. ...
more >>>
--
Scalar product estimates have so far been used in
proving several unweighted threshold lower bounds.
We show that if a basis set of Boolean functions satisfies
certain weak stability conditions, then
scalar product estimates
yield lower bounds for the size of weighted thresholds
of these basis functions.
Stable ...
more >>>
Many dynamic programming algorithms for discrete optimization problems are "pure" in that they only use min/max and addition operations in their recursions. Some of them, in particular those for various shortest path problems, are even "incremental" in that one of the inputs to the addition operations is a variable. We ... more >>>
We consider the following question: using a source of labeled data and interaction with an untrusted prover, what is the complexity of verifying that a given hypothesis is "approximately correct"? We study interactive proof systems for PAC verification, where a verifier that interacts with a prover is required to accept ... more >>>
We develop a general framework that characterizes strong average-case lower bounds against circuit classes $\mathcal{C}$ contained in $\mathrm{NC}^1$, such as $\mathrm{AC}^0[\oplus]$ and $\mathrm{ACC}^0$. We apply this framework to show:
- Generic seed reduction: Pseudorandom generators (PRGs) against $\mathcal{C}$ of seed length $\leq n -1$ and error $\varepsilon(n) = n^{-\omega(1)}$ can ... more >>>