We consider the size of circuits which perfectly hash
an arbitrary subset $S\!\subset\!\bitset^n$ of cardinality $2^k$
into $\bitset^m$.
We observe that, in general, the size of such circuits is
exponential in $2k-m$,
and provide a matching upper bound.
Color Coding is an algorithmic technique for deciding efficiently
if a given input graph contains a path of a given length (or
another small subgraph of constant tree-width). Applications of the
method in computational biology motivate the study of similar
algorithms for counting the number of copies of a ...
more >>>
We consider the problem of constructing explicit Hitting sets for Combinatorial Shapes, a class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman (STOC 2011). These generalize many well-studied classes of tests, including symmetric functions and combinatorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuckerman (Combinatorica 1997) ... more >>>