We prove $\Omega (n^2)$ complexity \emph{lower bound} for the
general model of \emph{randomized computation trees} solving
the \emph{Knapsack Problem}, and more generally \emph{Restricted
Integer Programming}. This is the \emph{first nontrivial} lower
bound proven for this model of computation. The method of the ...
more >>>
We survey some of the recent results on the complexity of recognizing
n-dimensional linear arrangements and convex polyhedra by randomized
algebraic decision trees. We give also a number of concrete applications
of these results. In particular, we derive first nontrivial, in fact
quadratic, ...
more >>>