In this paper we prove near quadratic lower bounds for
depth-3 arithmetic formulae over fields of characteristic zero.
Such bounds are obtained for the elementary symmetric
functions, the (trace of) iterated matrix multiplication, and the
determinant. As corollaries we get the first nontrivial lower
bounds for ...
more >>>
A t-private private information retrieval (PIR) scheme allows a user to retrieve the i-th bit of an n-bit string x replicated among k servers, while any coalition of up to t servers learns no information about i. We present a new geometric approach to PIR, and obtain (1) A t-private ... more >>>
In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree $n$ in $n^2$ variables such that any homogeneous depth 4 arithmetic circuit computing it must have size $n^{\Omega(\log \log n)}$.
Our results extend ... more >>>
Two polynomials $f, g \in F[x_1, \ldots, x_n]$ are called shift-equivalent if there exists a vector $(a_1, \ldots, a_n) \in {F}^n$ such that the polynomial identity $f(x_1+a_1, \ldots, x_n+a_n) \equiv g(x_1,\ldots,x_n)$ holds. Our main result is a new randomized algorithm that tests whether two given polynomials are shift equivalent. Our ... more >>>
In this paper, we show that there is a family of polynomials $\{P_n\}$, where $P_n$ is a polynomial in $n$ variables of degree at most $d = O(\log^2 n)$, such that
1. $P_n$ can be computed by linear sized homogeneous depth-$5$ circuits.
2. $P_n$ can be computed by ... more >>>
Read-once Oblivious Algebraic Branching Programs (ROABPs) compute polynomials as products of univariate polynomials that have matrices as coefficients. In an attempt to understand the landscape of algebraic complexity classes surrounding ROABPs, we study classes of ROABPs based on the algebraic structure of these coefficient matrices. We study connections between polynomials ... more >>>
The dimension of partial derivatives (Nisan and Wigderson, 1997) is a popular measure for proving lower bounds in algebraic complexity. It is used to give strong lower bounds on the Waring decomposition of polynomials (called Waring rank). This naturally leads to an interesting open question: does this measure essentially characterize ... more >>>