Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > PARTIAL DERIVATIVES:
Reports tagged with Partial derivatives:
TR99-023 | 16th June 1999
Amir Shpilka, Avi Wigderson

Depth-3 Arithmetic Formulae over Fields of Characteristic Zero


In this paper we prove near quadratic lower bounds for
depth-3 arithmetic formulae over fields of characteristic zero.
Such bounds are obtained for the elementary symmetric
functions, the (trace of) iterated matrix multiplication, and the
determinant. As corollaries we get the first nontrivial lower
bounds for ... more >>>


TR05-009 | 14th December 2004
David P. Woodruff, Sergey Yekhanin

A Geometric Approach to Information-Theoretic Private Information Retrieval

A t-private private information retrieval (PIR) scheme allows a user to retrieve the i-th bit of an n-bit string x replicated among k servers, while any coalition of up to t servers learns no information about i. We present a new geometric approach to PIR, and obtain (1) A t-private ... more >>>


TR13-181 | 20th December 2013
Mrinal Kumar, Shubhangi Saraf

Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits

In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree $n$ in $n^2$ variables such that any homogeneous depth 4 arithmetic circuit computing it must have size $n^{\Omega(\log \log n)}$.

Our results extend ... more >>>


TR14-003 | 10th January 2014
Zeev Dvir, Rafael Mendes de Oliveira, Amir Shpilka

Testing Equivalence of Polynomials under Shifts

Revisions: 2 , Comments: 1

Two polynomials $f, g \in F[x_1, \ldots, x_n]$ are called shift-equivalent if there exists a vector $(a_1, \ldots, a_n) \in {F}^n$ such that the polynomial identity $f(x_1+a_1, \ldots, x_n+a_n) \equiv g(x_1,\ldots,x_n)$ holds. Our main result is a new randomized algorithm that tests whether two given polynomials are shift equivalent. Our ... more >>>


TR16-137 | 3rd September 2016
Mrinal Kumar, Ramprasad Saptharishi

Finer separations between shallow arithmetic circuits

In this paper, we show that there is a family of polynomials $\{P_n\}$, where $P_n$ is a polynomial in $n$ variables of degree at most $d = O(\log^2 n)$, such that

1. $P_n$ can be computed by linear sized homogeneous depth-$5$ circuits.

2. $P_n$ can be computed by ... more >>>


TR22-009 | 17th January 2022
C. Ramya, Anamay Tengse

On Finer Separations between Subclasses of Read-once Oblivious ABPs

Read-once Oblivious Algebraic Branching Programs (ROABPs) compute polynomials as products of univariate polynomials that have matrices as coefficients. In an attempt to understand the landscape of algebraic complexity classes surrounding ROABPs, we study classes of ROABPs based on the algebraic structure of these coefficient matrices. We study connections between polynomials ... more >>>


TR24-119 | 14th July 2024
Vishwas Bhargava, Anamay Tengse

Explicit Commutative ROABPs from Partial Derivatives

The dimension of partial derivatives (Nisan and Wigderson, 1997) is a popular measure for proving lower bounds in algebraic complexity. It is used to give strong lower bounds on the Waring decomposition of polynomials (called Waring rank). This naturally leads to an interesting open question: does this measure essentially characterize ... more >>>




ISSN 1433-8092 | Imprint