Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with Partial derivatives:
TR99-023 | 16th June 1999
Amir Shpilka, Avi Wigderson

Depth-3 Arithmetic Formulae over Fields of Characteristic Zero

In this paper we prove near quadratic lower bounds for
depth-3 arithmetic formulae over fields of characteristic zero.
Such bounds are obtained for the elementary symmetric
functions, the (trace of) iterated matrix multiplication, and the
determinant. As corollaries we get the first nontrivial lower
bounds for ... more >>>

TR05-009 | 14th December 2004
David P. Woodruff, Sergey Yekhanin

A Geometric Approach to Information-Theoretic Private Information Retrieval

A t-private private information retrieval (PIR) scheme allows a user to retrieve the i-th bit of an n-bit string x replicated among k servers, while any coalition of up to t servers learns no information about i. We present a new geometric approach to PIR, and obtain (1) A t-private ... more >>>

TR13-181 | 20th December 2013
Mrinal Kumar, Shubhangi Saraf

Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits

In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree $n$ in $n^2$ variables such that any homogeneous depth 4 arithmetic circuit computing it must have size $n^{\Omega(\log \log n)}$.

Our results extend ... more >>>

TR14-003 | 10th January 2014
Zeev Dvir, Rafael Mendes de Oliveira, Amir Shpilka

Testing Equivalence of Polynomials under Shifts

Revisions: 2 , Comments: 1

Two polynomials $f, g \in F[x_1, \ldots, x_n]$ are called shift-equivalent if there exists a vector $(a_1, \ldots, a_n) \in {F}^n$ such that the polynomial identity $f(x_1+a_1, \ldots, x_n+a_n) \equiv g(x_1,\ldots,x_n)$ holds. Our main result is a new randomized algorithm that tests whether two given polynomials are shift equivalent. Our ... more >>>

TR16-137 | 3rd September 2016
Mrinal Kumar, Ramprasad Saptharishi

Finer separations between shallow arithmetic circuits

In this paper, we show that there is a family of polynomials $\{P_n\}$, where $P_n$ is a polynomial in $n$ variables of degree at most $d = O(\log^2 n)$, such that

1. $P_n$ can be computed by linear sized homogeneous depth-$5$ circuits.

2. $P_n$ can be computed by ... more >>>

ISSN 1433-8092 | Imprint