Amir Shpilka, Avi Wigderson

In this paper we prove near quadratic lower bounds for

depth-3 arithmetic formulae over fields of characteristic zero.

Such bounds are obtained for the elementary symmetric

functions, the (trace of) iterated matrix multiplication, and the

determinant. As corollaries we get the first nontrivial lower

bounds for ...
more >>>

David P. Woodruff, Sergey Yekhanin

A t-private private information retrieval (PIR) scheme allows a user to retrieve the i-th bit of an n-bit string x replicated among k servers, while any coalition of up to t servers learns no information about i. We present a new geometric approach to PIR, and obtain (1) A t-private ... more >>>

Mrinal Kumar, Shubhangi Saraf

In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree $n$ in $n^2$ variables such that any homogeneous depth 4 arithmetic circuit computing it must have size $n^{\Omega(\log \log n)}$.

Our results extend ... more >>>

Zeev Dvir, Rafael Mendes de Oliveira, Amir Shpilka

Two polynomials $f, g \in F[x_1, \ldots, x_n]$ are called shift-equivalent if there exists a vector $(a_1, \ldots, a_n) \in {F}^n$ such that the polynomial identity $f(x_1+a_1, \ldots, x_n+a_n) \equiv g(x_1,\ldots,x_n)$ holds. Our main result is a new randomized algorithm that tests whether two given polynomials are shift equivalent. Our ... more >>>

Mrinal Kumar, Ramprasad Saptharishi

In this paper, we show that there is a family of polynomials $\{P_n\}$, where $P_n$ is a polynomial in $n$ variables of degree at most $d = O(\log^2 n)$, such that

1. $P_n$ can be computed by linear sized homogeneous depth-$5$ circuits.

2. $P_n$ can be computed by ... more >>>