Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > LATTICE PROBLEMS:
Reports tagged with Lattice problems:
TR99-006 | 10th March 1999
Jin-Yi Cai

Some Recent Progress on the Complexity of Lattice Problems

We survey some recent developments in the study of
the complexity of lattice problems. After a discussion of some
problems on lattices which can be algorithmically solved
efficiently, our main focus is the recent progress on complexity
results of intractability. We will discuss Ajtai's worst-case/
average-case connections, NP-hardness and non-NP-hardness,
more >>>


TR99-016 | 25th April 1999
Irit Dinur

Approximating SVP_\infty to within Almost-Polynomial Factors is NP-hard

This paper shows SVP_\infty and CVP_\infty to be NP-hard to approximate
to within any factor up to $n^{1/\log\log n}$. This improves on the
best previous result \cite{ABSS} that showed quasi-NP-hardness for
smaller factors, namely $2^{\log^{1-\epsilon}n}$ for any constant
$\epsilon>0$. We show a direct reduction from SAT to these
problems, that ... more >>>


TR24-018 | 28th January 2024
Huck Bennett, Surendra Ghentiyala, Noah Stephens-Davidowitz

The more the merrier! On the complexity of finding multicollisions, with connections to codes and lattices

Revisions: 2

We study the problem of finding multicollisions, that is, the total search problem in which the input is a function $\mathcal{C} : [A] \to [B]$ (represented as a circuit) and the goal is to find $L \leq \lceil A/B \rceil$ distinct elements $x_1,\ldots, x_L \in A$ such that $\mathcal{C}(x_1) = ... more >>>




ISSN 1433-8092 | Imprint