Recent work by Bernasconi, Damm and Shparlinski
proved lower bounds on the circuit complexity of the square-free
numbers, and raised as an open question if similar (or stronger)
lower bounds could be proved for the set of prime numbers. In
this short note, we answer this question ...
more >>>
A deterministic primality test with a polynomial time complexity of $\tilde{O}(\log^3(n))$ is presented. The test posits that an integer $n$ satisfying the conditions of the main theorem is prime. Combining elements of number theory and combinatorics, the proof operates on the basis of simultaneous modular congruences relating to binomial transforms ... more >>>