Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > PUBLIC-KEY CRYPTOGRAPHY:
Reports tagged with Public-Key Cryptography:
TR99-042 | 24th October 1999
Ran Canetti, Oded Goldreich, Silvio Micali.

Resettable Zero-Knowledge.

Revisions: 1


We introduce the notion of Resettable Zero-Knowledge (rZK),
a new security measure for cryptographic protocols
which strengthens the classical notion of zero-knowledge.
In essence, an rZK protocol is one that remains zero knowledge
even if an adeversary can interact with the prover many times, each
time ... more >>>


TR01-072 | 18th October 2001
Ronald Cramer, Victor Shoup

Universal Hash Proofs and and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption

Revisions: 2

We present several new and fairly practical public-key encryption
schemes and prove them secure against
adaptive chosen ciphertext attack. One scheme is based on Paillier's
Decision Composite Residuosity (DCR) assumption,
while another is based in the classical Quadratic Residuosity (QR)
assumption. The analysis is in the standard ... more >>>


TR01-096 | 21st November 2001
Jörg Rothe

Some Facets of Complexity Theory and Cryptography: A Five-Lectures Tutorial

Revisions: 1

In this tutorial, selected topics of cryptology and of
computational complexity theory are presented. We give a brief overview
of the history and the foundations of classical cryptography, and then
move on to modern public-key cryptography. Particular attention is
paid to cryptographic protocols and the problem of constructing ... more >>>


TR05-078 | 25th May 2005
Kooshiar Azimian, Javad Mohajeri, Mahmoud Salmasizadeh, Siamak Fayyaz

A Verifiable Partial Key Escrow, Based on McCurley Encryption Scheme

Revisions: 1

In this paper, firstly we propose two new concepts concerning the notion of key escrow encryption schemes: provable partiality and independency. Roughly speaking we say that a scheme has provable partiality if existing polynomial time algorithm for recovering the secret knowing escrowed information implies a polynomial time algorithm that can ... more >>>


TR05-124 | 2nd November 2005
Kooshiar Azimian

Breaking Diffie-Hellman is no Easier than Root Finding

In this paper we compare hardness of two well known problems: the Diffie-Hellman problem and the root finding problem. We prove that in any cyclic group computing Diffie-Hellman is not weaker than root finding if certain circumstances are met. As will be discussed in the paper this theorem can affect ... more >>>


TR10-127 | 9th August 2010
Brett Hemenway, Rafail Ostrovsky

Building Injective Trapdoor Functions From Oblivious Transfer

Revisions: 1

Injective one-way trapdoor functions are one of the most fundamental cryptographic primitives. In this work we give a novel construction of injective trapdoor functions based on oblivious transfer for long strings.

Our main result is to show that any 2-message statistically sender-private semi-honest oblivious transfer (OT) for ... more >>>


TR11-118 | 6th September 2011
Brett Hemenway, Rafail Ostrovsky, Martin Strauss, Mary Wootters

Public Key Locally Decodable Codes with Short Keys

This work considers locally decodable codes in the computationally bounded channel model. The computationally bounded channel model, introduced by Lipton in 1994, views the channel as an adversary which is restricted to polynomial-time computation. Assuming the existence of IND-CPA secure public-key encryption, we present a construction of public-key locally decodable ... more >>>




ISSN 1433-8092 | Imprint